scispace - formally typeset
Search or ask a question
Institution

Mississippi State University

EducationStarkville, Mississippi, United States
About: Mississippi State University is a education organization based out in Starkville, Mississippi, United States. It is known for research contribution in the topics: Population & Catfish. The organization has 14115 authors who have published 28594 publications receiving 700030 citations. The organization is also known as: The Mississippi State University of Agriculture and Applied Science & Mississippi State University of Agriculture and Applied Science.


Papers
More filters
Journal ArticleDOI
01 Jan 2016-Database
TL;DR: Compared to other interaction databases, the data collection approach ensures HPIDB 2.0 users access the most comprehensive HPI data from a wide range of pathogens and their hosts (594 pathogen and 70 hosts, as of February 2016).
Abstract: Identification and analysis of host–pathogen interactions (HPI) is essential to study infectious diseases. However, HPI data are sparse in existing molecular interaction databases, especially for agricultural host–pathogen systems. Therefore, resources that annotate, predict and display the HPI that underpin infectious diseases are critical for developing novel intervention strategies. HPIDB 2.0 (http://www.agbase.msstate.edu/hpi/main.html) is a resource for HPI data, and contains 45, 238 manually curated entries in the current release. Since the first description of the database in 2010, multiple enhancements to HPIDB data and interface services were made that are described here. Notably, HPIDB 2.0 now provides targeted biocuration of molecular interaction data. As a member of the International Molecular Exchange consortium, annotations provided by HPIDB 2.0 curators meet community standards to provide detailed contextual experimental information and facilitate data sharing. Moreover, HPIDB 2.0 provides access to rapidly available community annotations that capture minimum molecular interaction information to address immediate researcher needs for HPI network analysis. In addition to curation, HPIDB 2.0 integrates HPI from existing external sources and contains tools to infer additional HPI where annotated data are scarce. Compared to other interaction databases, our data collection approach ensures HPIDB 2.0 users access the most comprehensive HPI data from a wide range of pathogens and their hosts (594 pathogen and 70 host species, as of February 2016). Improvements also include enhanced search capacity, addition of Gene Ontology functional information, and implementation of network visualization. The changes made to HPIDB 2.0 content and interface ensure that users, especially agricultural researchers, are able to easily access and analyse high quality, comprehensive HPI data. All HPIDB 2.0 data are updated regularly, are publically available for direct download, and are disseminated to other molecular interaction resources. Database URL: http://www.agbase.msstate.edu/hpi/main.html

202 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the properties of a vegetable oil-based nanofluid, which was prepared by dispersing Fe3O4 nanoparticles in a vegetable insulation oil obtained from a laboratory at Chongqing University.
Abstract: Investigations during the last decade have shown that conductive nanoparticles can be dispersed in transformer oils to form nanofluids. Well-dispersed nanoparticles are capable of increasing the breakdown voltage of the oil under power frequency and lightning impulses. They also increase the inception voltages for partial discharge [1]. With increasing moisture content, reduction of the breakdown voltage of the nanofluid at power frequency is significantly smaller than that in the corresponding transformer oil [1]. The electrical and thermal properties of four types of nanofluid, prepared by dispersing Al2O3, Fe3O4, SiO2, and SiC nanoparticles in transformer oils, were described in [2]. It has also been reported that the thermal conductivity of such oil was enhanced by 8% when aluminum nitride nanoparticles were dispersed in it at a loading of 0.5% by weight, and its cooling capability was improved by about 20% [3]. An electrodynamic model has been developed describing streamer formation in transformer oil-based nanofluids, which presents generation, recombination, and transport equations for each charge carrier type [4]. Vegetable insulation oils are based on natural ester oils, which are environmentally friendly and fire resistant [4]���[9]. At the moment, little is known about the preparation of nanofluids using natural ester oils and their dielectric, breakdown, and aging properties. Surface modification of nanoparticles is a very effective procedure to avoid nanoparticle agglomeration in insulating nanofluids [10]���[14]. However, the surface modification procedures used for mineral oils cannot be applied to vegetable oils because of their very different molecular structures. We therefore investigated new approaches to the preparation of vegetable oil-based nanofluids. This paper presents some of the results of a study of the breakdown voltages and dielectric properties of a vegetable oil-based nanofluid. The nanofluid was prepared by dispersing Fe3O4 nanoparticles in a vegetable insulation oil obtained from a laboratory at Chongqing University. Oleic acid was used for surface modification of the nanoparticles.

201 citations

Journal ArticleDOI
TL;DR: In this paper, a standardized descriptive language for Cheddar cheese flavor was developed and validated using a 3-dimensional roundtable discussion with 15 individuals from industry, academia, and government.
Abstract: A standardized descriptive language for Cheddar cheese flavor was developed and validated. Representative Cheddar cheeses (240) were collected. Fifteen individuals from industry, academia, and government participated in a 3-d roundtable discussion to generate descriptive flavor terms. A highly trained descriptive panel (n = 11) refined the terms and identified references. Cheddar cheeses (24) were presented to the panel for validation with the identified lexicon. The panel differentiated the 24 Cheddar cheeses as determined by univariate and multivariate analysis of variance (P < 0.05). Twenty-seven terms were identified to describe Cheddar flavor. Seventeen descriptive terms were present in most Cheddar cheeses. A standard sensory language for Cheddar cheese will facilitate training and communication between different research groups.

201 citations

Journal ArticleDOI
TL;DR: In this paper, an adaptive phase-locked loop (PLL) structure is proposed which offers fast and smooth tracking of phase-angle jumps, and adjusts the gain of frequency estimation loop in order to mitigate large transients of frequency during sudden phase angle variations.
Abstract: An adaptive phase-locked loop (PLL) structure is proposed which offers fast and smooth tracking of phase-angle jumps. Correlatively, it offers soft startup stage and avoids undesired frequency swings caused by phase jumps. The adaptive mechanism adjusts the gain of frequency estimation loop in order to mitigate large transients of frequency during sudden phase angle variations. This reduces the coupling of phase and frequency variables and allows tremendously faster and smoother estimation of both variables. The proposed adaptive mechanism can be applied to different PLL and adaptive notch-filter systems three of which including the enhanced PLL (EPLL), the synchronous reference frame PLL (SRF-PLL), and the second order generalized integrator frequency-locked loop (SOGI-FLL) are studied in this paper.

201 citations

Journal ArticleDOI
TL;DR: It is demonstrated that a unique 33-kD cysteine proteinase accumulates in the whorl in response to larval feeding in maize genotypes derived from Antiquan germ plasm that are resistant to Lepidoptera.
Abstract: Plants respond to insect feeding with a number of defense mechanisms. Using maize genotypes derived from Antiquan germ plasm that are resistant to Lepidoptera, we have demonstrated that a unique 33-kD cysteine proteinase accumulates in the whorl in response to larval feeding. The abundance of the proteinase increased dramatically at the site of larval feeding after 1 hr of infestation and continued to accumulate for as long as 7 days. The 33-kD cysteine proteinase was most abundant in the yellow-green portion of the whorl—the normal site of larval feeding and the tissue that has the greatest inhibitory effect on larval growth in bioassays. The proteinase was expressed in response to wounding and was found in senescent leaves. It may be a marker of programmed cell death. The gene coding for the proteinase, mir1, has been transformed into Black Mexican Sweet callus. When larvae were reared on callus expressing the proteinase, their growth was inhibited ∼60 to 80%. The expression of a cysteine proteinase, instead of a cysteine proteinase inhibitor, may be a novel insect defense mechanism in plants.

200 citations


Authors

Showing all 14277 results

NameH-indexPapersCitations
Naomi J. Halas14043582040
Bin Liu138218187085
Shuai Liu129109580823
Vijay P. Singh106169955831
Liangpei Zhang9783935163
K. L. Dooley9532063579
Feng Chen95213853881
Marco Cavaglia9337260157
Tuan Vo-Dinh8669824690
Nicholas H. Barton8426732707
S. Kandhasamy8123550363
Michael S. Sacks8038620510
Dinesh Mohan7928335775
James Mallet7820921349
George D. Kuh7724830346
Network Information
Related Institutions (5)
Texas A&M University
164.3K papers, 5.7M citations

94% related

University of Georgia
93.6K papers, 3.7M citations

93% related

Purdue University
163.5K papers, 5.7M citations

93% related

Michigan State University
137K papers, 5.6M citations

93% related

University of Illinois at Urbana–Champaign
225.1K papers, 10.1M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202347
2022247
20211,725
20201,620
20191,465
20181,467