scispace - formally typeset
Search or ask a question
Institution

Northumbria University

EducationNewcastle upon Tyne, United Kingdom
About: Northumbria University is a education organization based out in Newcastle upon Tyne, United Kingdom. It is known for research contribution in the topics: Context (language use) & Population. The organization has 5624 authors who have published 17423 publications receiving 381949 citations. The organization is also known as: University of Northumbria at Newcastle.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper investigated the relationship between conspiracy theory beliefs, paranormal belief, paranoid ideation, and schizotypy, in a study involving 60 females and 60 males aged 18-50.

262 citations

Proceedings ArticleDOI
26 Aug 2016
TL;DR: This paper provides an overview of OWC highlighting the advantages and wide range of application areas of this emerging technology and its potential for high-impact results.
Abstract: This book focuses on optical wireless communications (OWC), an emerging technology with huge potential for the provision of pervasive and reliable next-generation communications networks. It shows how the development of novel and efficient wireless technologies can contribute to a range of transmission links essential for the heterogeneous networks of the future to support various communications services and traffic patterns with ever-increasing demands for higher data-transfer rates. The book starts with a chapter reviewing the OWC field, which explains different sub-technologies (visible-light, ultraviolet (UV) and infrared (IR) communications) and introduces the spectrum of application areas (indoor, vehicular, terrestrial, underwater, intersatellite, deep space, etc.). This provides readers with the necessary background information to understand the specialist material in the main body of the book, which is in four parts. The first of these deals with propagation modelling and channel characterization of OWC channels at different spectral bands and with different applications. The second starts by providing a unified information-theoretic treatment of OWC and then discusses advanced physical-layer methodologies (including, but not limited to: advanced coding, modulation diversity, cooperation and multi-carrier techniques) and the ultimate limitations imposed by practical constraints. On top of the physical layer come the upper-layer protocols and cross-layer designs that are the subject of the third part of the book. The last part of the book features a chapter-by-chapter assessment of selected OWC applications. Optical Wireless Communications is a valuable reference guide for academic researchers and practitioners concerned with the future development of the worlds communication networks. It succinctly but comprehensively presents the latest advances in the field.

261 citations

Journal ArticleDOI
Julien Emile-Geay1, Nicholas P. McKay2, Darrell S. Kaufman2, Lucien von Gunten, Jianghao Wang3, Kevin J. Anchukaitis4, Nerilie J. Abram5, Jason A. Addison6, Mark A. J. Curran7, Mark A. J. Curran8, Michael N. Evans9, Benjamin J. Henley10, Zhixin Hao, Belen Martrat11, Belen Martrat12, Helen McGregor13, Raphael Neukom14, Gregory T. Pederson6, Barbara Stenni15, Kaustubh Thirumalai16, Johannes P. Werner17, Chenxi Xu18, Dmitry Divine19, Bronwyn C. Dixon10, Joelle Gergis10, Ignacio A. Mundo20, Takeshi Nakatsuka, Steven J. Phipps8, Cody C. Routson2, Eric J. Steig21, Jessica E. Tierney4, Jonathan J. Tyler22, Kathryn Allen10, Nancy A. N. Bertler23, Jesper Björklund24, Brian M. Chase25, Min Te Chen26, Edward R. Cook27, Rixt de Jong14, Kristine L. DeLong28, Daniel A. Dixon29, Alexey A. Ekaykin30, Alexey A. Ekaykin31, Vasile Ersek32, Helena L. Filipsson33, Pierre Francus34, Mandy Freund10, Massimo Frezzotti, Narayan Prasad Gaire35, Narayan Prasad Gaire36, Konrad Gajewski37, Quansheng Ge, Hugues Goosse38, Anastasia Gornostaeva, Martin Grosjean14, Kazuho Horiuchi39, Anne Hormes40, Katrine Husum19, Elisabeth Isaksson19, Selvaraj Kandasamy41, Kenji Kawamura42, Kenji Kawamura43, K. Halimeda Kilbourne9, Nalan Koc19, Guillaume Leduc44, Hans W. Linderholm40, Andrew Lorrey45, Vladimir Mikhalenko46, P. Graham Mortyn47, Hideaki Motoyama43, Andrew D. Moy7, Andrew D. Moy8, Robert Mulvaney48, Philipp Munz49, David J. Nash50, David J. Nash51, Hans Oerter52, Thomas Opel52, Anais Orsi53, Dmitriy V. Ovchinnikov54, Trevor J. Porter55, Heidi A. Roop56, Casey Saenger21, Masaki Sano, David J. Sauchyn38, Krystyna M. Saunders14, Krystyna M. Saunders57, Marit-Solveig Seidenkrantz58, Mirko Severi59, Xuemei Shao, Marie-Alexandrine Sicre60, Michael Sigl61, Kate E. Sinclair, Scott St. George62, Jeannine-Marie St. Jacques63, Jeannine-Marie St. Jacques64, Meloth Thamban65, Udya Kuwar Thapa62, Elizabeth R. Thomas48, Chris S. M. Turney66, Ryu Uemura67, A. E. Viau37, Diana Vladimirova31, Diana Vladimirova30, Eugene R. Wahl68, James W. C. White69, Zicheng Yu70, Jens Zinke71, Jens Zinke72 
University of Southern California1, Northern Arizona University2, MathWorks3, University of Arizona4, Australian National University5, United States Geological Survey6, Australian Antarctic Division7, University of Tasmania8, University of Maryland, College Park9, University of Melbourne10, Spanish National Research Council11, University of Cambridge12, University of Wollongong13, University of Bern14, Ca' Foscari University of Venice15, University of Texas at Austin16, University of Bergen17, Chinese Academy of Sciences18, Norwegian Polar Institute19, National University of Cuyo20, University of Washington21, University of Adelaide22, Victoria University of Wellington23, Swiss Federal Institute for Forest, Snow and Landscape Research24, University of Montpellier25, National Taiwan Ocean University26, Columbia University27, Louisiana State University28, University of Maine29, Saint Petersburg State University30, Arctic and Antarctic Research Institute31, Northumbria University32, Lund University33, Institut national de la recherche scientifique34, Tribhuvan University35, Nepal Academy of Science and Technology36, University of Ottawa37, Université catholique de Louvain38, Hirosaki University39, University of Gothenburg40, Xiamen University41, Japan Agency for Marine-Earth Science and Technology42, National Institute of Polar Research43, Aix-Marseille University44, National Institute of Water and Atmospheric Research45, Russian Academy of Sciences46, Autonomous University of Barcelona47, British Antarctic Survey48, University of Tübingen49, University of the Witwatersrand50, University of Brighton51, Alfred Wegener Institute for Polar and Marine Research52, Université Paris-Saclay53, Sukachev Institute of Forest54, University of Toronto55, University at Buffalo56, Australian Nuclear Science and Technology Organisation57, Aarhus University58, University of Florence59, Pierre-and-Marie-Curie University60, Paul Scherrer Institute61, University of Minnesota62, Concordia University63, University of Regina64, National Centre for Antarctic and Ocean Research65, University of New South Wales66, University of the Ryukyus67, National Oceanic and Atmospheric Administration68, University of Colorado Boulder69, Lehigh University70, Free University of Berlin71, Australian Institute of Marine Science72
TL;DR: A community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative, suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.
Abstract: Reproducible climate reconstructions of the Common Era (1 CE to present) are key to placing industrial-era warming into the context of natural climatic variability. Here we present a community-sourced database of temperature-sensitive proxy records from the PAGES2k initiative. The database gathers 692 records from 648 locations, including all continental regions and major ocean basins. The records are from trees, ice, sediment, corals, speleothems, documentary evidence, and other archives. They range in length from 50 to 2000 years, with a median of 547 years, while temporal resolution ranges from biweekly to centennial. Nearly half of the proxy time series are significantly correlated with HadCRUT4.2 surface temperature over the period 1850–2014. Global temperature composites show a remarkable degree of coherence between high- and low-resolution archives, with broadly similar patterns across archive types, terrestrial versus marine locations, and screening criteria. The database is suited to investigations of global and regional temperature variability over the Common Era, and is shared in the Linked Paleo Data (LiPD) format, including serializations in Matlab, R and Python.

260 citations

Journal ArticleDOI
TL;DR: Simulation results validate the effectiveness of system security enhancement via an IRS via the block coordinate descent (BCD) algorithm to solve the secrecy rate maximization (SRM) problem.
Abstract: This article considers an artificial noise (AN)-aided secure MIMO wireless communication system. To enhance the system security performance, the advanced intelligent reflecting surface (IRS) is invoked, and the base station (BS), legitimate information receiver (IR) and eavesdropper (Eve) are equipped with multiple antennas. With the aim for maximizing the secrecy rate (SR), the transmit precoding (TPC) matrix at the BS, covariance matrix of AN and phase shifts at the IRS are jointly optimized subject to constrains of transmit power limit and unit modulus of IRS phase shifts. Then, the secrecy rate maximization (SRM) problem is formulated, which is a non-convex problem with multiple coupled variables. To tackle it, we propose to utilize the block coordinate descent (BCD) algorithm to alternately update the variables while keeping SR non-decreasing. Specifically, the optimal TPC matrix and AN covariance matrix are derived by Lagrangian multiplier method, and the optimal phase shifts are obtained by Majorization-Minimization (MM) algorithm. Since all variables can be calculated in closed form, the proposed algorithm is very efficient. We also extend the SRM problem to the more general multiple-IRs scenario and propose a BCD algorithm to solve it. Simulation results validate the effectiveness of system security enhancement via an IRS.

259 citations

Journal ArticleDOI
TL;DR: The development of CONI is reported on and its capacity to extend the capability of content analysis methods is demonstrated through the application to a matched sample of 14 pairs of companies from the United Kingdom and Germany over a period of five years.
Abstract: A number of previous studies have utilised content analysis as a method for analysing environmental reporting. In this study, a method, devised by the authors and capable of both mechanistic and interpretative narrative interrogation is presented. By adopting a matrix approach to environmental narratives, multiple information characteristics can be taken into account when analysing disclosures. The method developed in this paper (termed CONI or consolidated narrative interrogation) provides a measure of information diversity, information content and volume. The content analysis instrument facilitates data capture inaccessible to less penetrating research instruments. The joint objectives of this paper are to report on the development of CONI and to demonstrate its capacity to extend the capability of content analysis methods. In particular, the paper demonstrates the utility of CONI through the application to a matched sample of 14 pairs of companies from the United Kingdom and Germany over a period of five years. Findings include the observation that information diversity has broadened over time. The study also notes the dominance of narrative over numerical content with little disclosure containing comparative or contextualised numerical information. There were few significant differences in environmental reporting between the two countries. The paper concludes with suggested opportunities for future research using the CONI research instrument.

258 citations


Authors

Showing all 5812 results

NameH-indexPapersCitations
Peter Hall132164085019
William J. Kraemer12375554774
Adrian Jenkins11842766331
Timothy D. Noakes11070139090
David R. Smith11088191683
Christopher P. Day10130443632
Mark Walker9762258554
Christopher D. Buckley8844025664
Simon C. Robson8855229808
Keith Wesnes8334419628
Tibor Hortobágyi7945522017
Ling Shao7878226293
Derek K. Jones7637533916
Alan Richardson7636319893
Andrew R. Gennery7439216621
Network Information
Related Institutions (5)
University of Sheffield
102.9K papers, 3.9M citations

94% related

University of Southampton
99.4K papers, 3.4M citations

93% related

University of Nottingham
119.6K papers, 4.2M citations

93% related

University of Warwick
77.1K papers, 2.6M citations

93% related

University of Manchester
168K papers, 6.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023141
2022361
20212,033
20201,696
20191,391
20181,255