scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Catalonia

EducationBarcelona, Spain
About: Polytechnic University of Catalonia is a education organization based out in Barcelona, Spain. It is known for research contribution in the topics: Finite element method & Population. The organization has 16006 authors who have published 45325 publications receiving 949306 citations. The organization is also known as: UPC - BarcelonaTECH & Technical University of Catalonia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a detailed numerical heat transfer model based on the finite volume method for these equipment is presented, where the different elements of the receiver are discretised into several segments in both axial and azimuthal directions and energy balances are applied for each control volume.

229 citations

Journal ArticleDOI
TL;DR: The constitutive model presented in this work is built on a conceptual approach for unsaturated expansive soils in which the fundamental characteristic is the explicit consideration of two pore levels, and has been formulated considering concepts of classical and generalized plasticity theories.
Abstract: The constitutive model presented in this work is built on a conceptual approach for unsaturated expansive soils in which the fundamental characteristic is the explicit consideration of two pore levels. The distinction between the macro- and microstructure provides the opportunity to take into account the dominant phenomena that affect the behaviour of each structural level and the main interactions between them. The microstructure is associated with the active clay minerals, while the macrostructure accounts for the larger-scale structure of the material. The model has been formulated considering concepts of classical and generalized plasticity theories. The generalized stress-strain rate equations are derived within a framework of multidissipative materials, which provides a consistent and formal approach when there are several sources of energy dissipation. The model is formulated in the space of stresses, suction and temperature; and has been implemented in a finite element code. The approach has been applied to explaining and reproducing the behaviour of expansive soils in a variety of problems for which experimental data are available. Three application cases are presented in this paper. Of particular interest is the modelling of an accidental overheating, that took place in a large-scale heating test. This test allows the capabilities of the model to be checked when a complex thermo-hydro-mechanical (THM) path is followed.

228 citations

Journal ArticleDOI
TL;DR: It would include details of the processes that produced electronic data as far back as the beginning of time or at least the epoch of provenance awareness.
Abstract: It would include details of the processes that produced electronic data as far back as the beginning of time or at least the epoch of provenance awareness.

228 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that slip is not transferred from one crystal to the other with a residual dislocation left at the interface, and that the matrix dislocation decomposes into interfacial defects.
Abstract: Computer simulation has been used to study the interaction of a perfect, basal dislocation with a {1012} twin boundary in a hcp metal for the situation where the 1/3{1120} Burgers vector is inclined at 60° to the interface. It is found that slip is not transferred from one crystal to the other with a residual dislocation left at the interface. Instead, the matrix dislocation decomposes into interfacial defects. We show that as a result of this decomposition the matrix dislocation becomes a new source of twinning dislocations that produce twin growth when the appropriate stress is applied to the crystal. The mechanism described does not require twinning dislocations to multiply by a pole process.

228 citations

Journal ArticleDOI
TL;DR: In this paper, an attempt to predict both landslide displacements and velocities was performed at Vallcebre by solving the momentum equation in which a viscous term (Bingham and power law) was added.
Abstract: In active landslides, the prediction of acceleration of movement is a crucial issue for the design and performance of warning systems. The landslide of Vallcebre in the Eastern Pyreenes, Spain, has been monitored since 1996 and data on rainfall, groundwater levels and ground displacements are measured on a regular basis. Displacements observed in borehole wire extensometers have shown an immediate response of the landslide to rainfall episodes. This rapid response is likely due to the presence of preferential drainage ways. The occurrence of nearly constant rates of displacement in coincidence with steady groundwater levels suggests the presence of viscous forces developed during the movement. An attempt to predict both landslide displacements and velocities was performed at Vallcebre by solving the momentum equation in which a viscous term (Bingham and power law) was added. Results show that, using similar rheological parameters for the entire landslide, computed displacements reproduce quite accurately the displacements observed at three selected wire extensometers. These results indicate that prediction of displacements from groundwater level changes is feasible.

228 citations


Authors

Showing all 16211 results

NameH-indexPapersCitations
Frede Blaabjerg1472161112017
Carlos M. Duarte132117386672
Ian F. Akyildiz11761299653
Josep M. Guerrero110119760890
David S. Wishart10852376652
O. C. Zienkiewicz10745571204
Maciej Lewenstein10493147362
Jordi Rello10369435994
Anil Kumar99212464825
Surendra P. Shah9971032832
Liang Wang98171845600
Aharon Gedanken9686138974
María Vallet-Regí9571141641
Bonaventura Clotet9478439004
Roberto Elosua9048154019
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

University of Waterloo
93.9K papers, 2.9M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023129
2022379
20212,313
20202,429
20192,427