scispace - formally typeset
Search or ask a question
Institution

Polytechnic University of Catalonia

EducationBarcelona, Spain
About: Polytechnic University of Catalonia is a education organization based out in Barcelona, Spain. It is known for research contribution in the topics: Finite element method & Population. The organization has 16006 authors who have published 45325 publications receiving 949306 citations. The organization is also known as: UPC - BarcelonaTECH & Technical University of Catalonia.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, 16 researchers, each a world-leading expert in their respective subfields, contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.
Abstract: Lightwave communications is a necessity for the information age. Optical links provide enormous bandwidth, and the optical fiber is the only medium that can meet the modern society's needs for transporting massive amounts of data over long distances. Applications range from global high-capacity networks, which constitute the backbone of the internet, to the massively parallel interconnects that provide data connectivity inside datacenters and supercomputers. Optical communications is a diverse and rapidly changing field, where experts in photonics, communications, electronics, and signal processing work side by side to meet the ever-increasing demands for higher capacity, lower cost, and lower energy consumption, while adapting the system design to novel services and technologies. Due to the interdisciplinary nature of this rich research field, Journal of Optics has invited 16 researchers, each a world-leading expert in their respective subfields, to contribute a section to this invited review article, summarizing their views on state-of-the-art and future developments in optical communications.

477 citations

Proceedings ArticleDOI
01 May 2000
TL;DR: This paper proposes a register file architecture composed of multiple banks, which provides low latency and simple bypass logic and shows that a two-level organization degrades IPC and increases performance by 87% and 92% when the register file access time is factored in.
Abstract: The register file access time is one of the critical delays in current superscalar processors. Its impact on processor performance is likely to increase in future processor generations, as they are expected to increase the issue width (which implies more register ports) and the size of the instruction window (which implies more registers), and to use some kind of multithreading. Under this scenario, the register file access time could be a dominant delay and a pipelined implementation would be desirable to allow for high clock rates.However, a multi-stage register file has severe implications for processor performance (e.g. higher branch misprediction penalty) and complexity (more levels of bypass logic). To tackle these two problems, in this paper we propose a register file architecture composed of multiple banks. In particular we focus on a multi-level organization of the register file, which provides low latency and simple bypass logic. We propose several caching policies and prefetching strategies and demonstrate the potential of this multiple-banked organization. For instance, we show that a two-level organization degrades IPC by 10% and 2% with respect to a non-pipelined single-banked register file, for SpecInt95 and SpecFP95 respectively, but it increases performance by 87% and 92% when the register file access time is factored in.

475 citations

Journal ArticleDOI
23 Mar 2007-Science
TL;DR: This work analyzed the probabilistic and transient differentiation of Bacillus subtilis cells into the state of competence to reveal a noise-dependent circuit that is remarkably resilient and tunable in terms of its dynamic behavior.
Abstract: The dynamic process of differentiation depends on the architecture, quantitative parameters, and noise of underlying genetic circuits. However, it remains unclear how these elements combine to control cellular behavior. We analyzed the probabilistic and transient differentiation of Bacillus subtilis cells into the state of competence. A few key parameters independently tuned the frequency of initiation and the duration of competence episodes and allowed the circuit to access different dynamic regimes, including oscillation. Altering circuit architecture showed that the duration of competence events can be made more precise. We used an experimental method to reduce global cellular noise and showed that noise levels are correlated with frequency of differentiation events. Together, the data reveal a noise-dependent circuit that is remarkably resilient and tunable in terms of its dynamic behavior.

473 citations

Journal ArticleDOI
TL;DR: In this paper, a Particle Method is used to solve the continuous fluid mechanics equations, in which the external applied forces on each particle, the incompressible Navier-Stokes equations using a Lagrangian formulation are solved at each time step.
Abstract: SUMMARY Particle Methods are those in which the problem is represented by a discrete number of particles. Each particle moves accordingly with its own mass and the external/internal forces applied to it. Particle Methods may be used for both, discrete and continuous problems. In this paper, a Particle Method is used to solve the continuous fluid mechanics equations. To evaluate the external applied forces on each particle, the incompressible Navier–Stokes equations using a Lagrangian formulation are solved at each time step. The interpolation functions are those used in the Meshless Finite Element Method and the time integration is introduced by an implicit fractional-step method. In this manner classical stabilization terms used in the momentum equations are unnecessary due to lack of convective terms in the Lagrangian formulation. Once the forces are evaluated, the particles move independently of the mesh. All the information is transmitted by the particles. Fluid–structure interaction problems including free-fluid-surfaces, breaking waves and fluid particle separation may be easily solved with this methodology. Copyright 2004 John Wiley & Sons, Ltd.

467 citations

Journal ArticleDOI
TL;DR: It is proved that the metric dimension of G\,\square\,G$ is tied in a strong sense to the minimum order of a so-called doubly resolving set in $G$.
Abstract: A set of vertices $S$ resolves a graph $G$ if every vertex is uniquely determined by its vector of distances to the vertices in $S$. The metric dimension of $G$ is the minimum cardinality of a resolving set of $G$. This paper studies the metric dimension of cartesian products $G\,\square\,H$. We prove that the metric dimension of $G\,\square\,G$ is tied in a strong sense to the minimum order of a so-called doubly resolving set in $G$. Using bounds on the order of doubly resolving sets, we establish bounds on $G\,\square\,H$ for many examples of $G$ and $H$. One of our main results is a family of graphs $G$ with bounded metric dimension for which the metric dimension of $G\,\square\,G$ is unbounded.

461 citations


Authors

Showing all 16211 results

NameH-indexPapersCitations
Frede Blaabjerg1472161112017
Carlos M. Duarte132117386672
Ian F. Akyildiz11761299653
Josep M. Guerrero110119760890
David S. Wishart10852376652
O. C. Zienkiewicz10745571204
Maciej Lewenstein10493147362
Jordi Rello10369435994
Anil Kumar99212464825
Surendra P. Shah9971032832
Liang Wang98171845600
Aharon Gedanken9686138974
María Vallet-Regí9571141641
Bonaventura Clotet9478439004
Roberto Elosua9048154019
Network Information
Related Institutions (5)
Delft University of Technology
94.4K papers, 2.7M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

94% related

University of Waterloo
93.9K papers, 2.9M citations

94% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Technical University of Denmark
66.3K papers, 2.4M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
20241
2023129
2022379
20212,313
20202,429
20192,427