scispace - formally typeset
Search or ask a question

Showing papers by "Polytechnic University of Catalonia published in 2011"


Journal ArticleDOI
TL;DR: It is demonstrated that Au particles in the size range 3-30 nm on TiO₂ are very active in hydrogen production from ethanol, and the high hydrogen yield observed makes these catalysts promising materials for solar conversion.
Abstract: Catalytic hydrogen production from renewables is a promising method for providing energy carriers in the near future. Photocatalysts capable of promoting this reaction are often composed of noble metal nanoparticles deposited on a semiconductor. The most promising semiconductor at present is TiO₂. The successful design of these catalysts relies on a thorough understanding of the role of the noble metal particle size and the TiO₂ polymorph. Here we demonstrate that Au particles in the size range 3-30 nm on TiO₂ are very active in hydrogen production from ethanol. It was found that Au particles of similar size on anatase nanoparticles delivered a rate two orders of magnitude higher than that recorded for Au on rutile nanoparticles. Surprisingly, it was also found that Au particle size does not affect the photoreaction rate over the 3-12 nm range. The high hydrogen yield observed makes these catalysts promising materials for solar conversion.

1,053 citations


Journal ArticleDOI
TL;DR: In this paper, a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by nonlinear lattices is presented, with emphasis on perspectives for implementation of the theoretical predictions in the experiment.
Abstract: This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are also surveyed, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation. The solitons are considered in one, two, and three dimensions. Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions can be drawn. In particular, a novel fundamental property of one-dimensional solitons, which does not occur in the absence of NLs, is a finite threshold value of the soliton norm, necessary for their existence. In multidimensional settings, the stability of solitons supported by the spatial modulation of the nonlinearity is a truly challenging problem, for theoretical and experimental studies alike. In both the one-dimensional and two-dimensional cases, the mechanism that creates solitons in NLs in principle is different from its counterpart in linear lattices, as the solitons are created directly, rather than bifurcating from Bloch modes of linear lattices.

752 citations


Journal ArticleDOI
TL;DR: This paper proposes a new topology, based on the H-bridge with a new ac bypass circuit consisting of a diode rectifier and a switch with clamping to the dc midpoint, which achieves high conversion efficiency and low leakage current.
Abstract: There is a strong trend in the photovoltaic inverter technology to use transformerless topologies in order to acquire higher efficiencies combining with very low ground leakage current. In this paper, a new topology, based on the H-bridge with a new ac bypass circuit consisting of a diode rectifier and a switch with clamping to the dc midpoint, is proposed. The topology is simulated and experimentally validated, and a comparison with other existing topologies is performed. High conversion efficiency and low leakage current are demonstrated.

743 citations


Journal ArticleDOI
01 Sep 2011
TL;DR: A survey of some of the most important lines of hybridization of metaheuristics with other techniques for optimization, which includes, for example, the combination of exact algorithms and meta heuristics.
Abstract: Research in metaheuristics for combinatorial optimization problems has lately experienced a noteworthy shift towards the hybridization of metaheuristics with other techniques for optimization. At the same time, the focus of research has changed from being rather algorithm-oriented to being more problem-oriented. Nowadays the focus is on solving the problem at hand in the best way possible, rather than promoting a certain metaheuristic. This has led to an enormously fruitful cross-fertilization of different areas of optimization. This cross-fertilization is documented by a multitude of powerful hybrid algorithms that were obtained by combining components from several different optimization techniques. Hereby, hybridization is not restricted to the combination of different metaheuristics but includes, for example, the combination of exact algorithms and metaheuristics. In this work we provide a survey of some of the most important lines of hybridization. The literature review is accompanied by the presentation of illustrative examples.

684 citations


Journal ArticleDOI
TL;DR: This paper reviews the state of the art in the field of lock-in time-of-flight (ToF) cameras, their advantages, their limitations, the existing calibration methods, and the way they are being used, sometimes in combination with other sensors.
Abstract: This paper reviews the state-of-the art in the field of lock-in time-of-flight (ToF) cameras, their advantages, their limitations, the existing calibration methods, and the way they are being used, sometimes in combination with other sensors. Even though lock-in ToF cameras provide neither higher resolution nor larger ambiguity-free range compared to other range map estimation systems, advantages such as registered depth and intensity data at a high frame rate, compact design, low weight, and reduced power consumption have motivated their increasing usage in several research areas, such as computer graphics, machine vision, and robotics.

594 citations


Journal ArticleDOI
M. Ageron1, Juanan Aguilar2, I. Al Samarai1, Arnauld Albert  +284 moreInstitutions (21)
TL;DR: The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational neutrino telescope in the Mediterranean Sea as mentioned in this paper, where the main purpose of the detector is to perform neutrinos astronomy and the apparatus also offers facilities for marine and Earth sciences.
Abstract: The ANTARES Neutrino Telescope was completed in May 2008 and is the first operational Neutrino Telescope in the Mediterranean Sea. The main purpose of the detector is to perform neutrino astronomy and the apparatus also offers facilities for marine and Earth sciences. This paper describes the design, the construction and the installation of the telescope in the deep sea, offshore from Toulon in France. An illustration of the detector performance is given.

563 citations


Journal ArticleDOI
TL;DR: It is concluded that the low-temperature mesophase of CB7CB is a new type of uniaxial nematic phase having a nonuniform director distribution composed of twist-bend deformations, and calculations using an atomistic model and the surface interaction potential with Monte Carlo sampling predict dielectric and elastic properties in the nematics phase.
Abstract: The liquid-crystal dimer 1'',7''-bis(4-cyanobiphenyl-4'-yl)heptane (CB7CB) exhibits two liquid-crystalline mesophases on cooling from the isotropic phase. The high-temperature phase is nematic; the identification and characterization of the other liquid-crystal phase is reported in this paper. It is concluded that the low-temperature mesophase of CB7CB is a new type of uniaxial nematic phase having a nonuniform director distribution composed of twist-bend deformations. The techniques of small-angle x-ray scattering, modulated differential scanning calorimetry, and dielectric spectroscopy have been applied to establish the nature of the nematic-nematic phase transition and the structural features of the twist-bend nematic phase. In addition, magnetic resonance studies (electron-spin resonance and (2)H nuclear magnetic resonance) have been used to investigate the orientational order and director distribution in the liquid-crystalline phases of CB7CB. The synthesis of a specifically deuterated sample of CB7CB is reported, and measurements showed a bifurcation of the quadrupolar splitting on entering the low-temperature mesophase from the high-temperature nematic phase. This splitting could be interpreted in terms of the chirality of the twist-bend structure of the director. Calculations using an atomistic model and the surface interaction potential with Monte Carlo sampling have been carried out to determine the conformational distribution and predict dielectric and elastic properties in the nematic phase. The former are in agreement with experimental measurements, while the latter are consistent with the formation of a twist-bend nematic phase.

511 citations


Proceedings Article
28 Apr 2011
TL;DR: This paper proposes an extension to the independent cascade model that incorporates the emergence and propagation of negative opinions, and designs an efficient algorithm to compute influence in tree structures, which is nontrivial due to the negativity bias in the model.
Abstract: Influence maximization, defined by Kempe, Kleinberg, and Tardos (2003), is the problem of finding a small set of seed nodes in a social network that maximizes the spread of influence under certain influence cascade models. In this paper, we propose an extension to the independent cascade model that incorporates the emergence and propagation of negative opinions. The new model has an explicit parameter called quality factor to model the natural behavior of people turning negative to a product due to product defects. Our model incorporates negativity bias (negative opinions usually dominate over positive opinions) commonly acknowledged in the social psychology literature. The model maintains some nice properties such as submodularity, which allows a greedy approximation algorithm for maximizing positive influence within a ratio of 1-1/e. We define a quality sensitivity ratio (qs-ratio) of influence graphs and show a tight bound of T(vn/k) on the qs-ratio, where n is the number of nodes in the network and k is the number of seeds selected, which indicates that seed selection is sensitive to the quality factor for general graphs. We design an efficient algorithm to compute influence in tree structures, which is nontrivial due to the negativity bias in the model. We use this algorithm as the core to build a heuristic algorithm for influence maximization for general graphs. Through simulations, we show that our heuristic algorithm has matching influence with a standard greedy approximation algorithm while being orders of magnitude faster.

372 citations


Journal ArticleDOI
TL;DR: In this paper, the connection between the fractional Laplacian operator and a class of conformally covariant operators in conformal geometry was studied, and the connections between Caffarelli and Silvestre were established.

369 citations


Journal ArticleDOI
TL;DR: The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous ( 131)I fraction to total (131)I, both on a spatial scale and its temporal variation.
Abstract: Radioactive emissions into the atmosphere from the damaged reactors of the Fukushima Dai-ichi nuclear power plant (NPP) started on March 12th, 2011. Among the various radionuclides released, iodine-131 ((131)I) and cesium isotopes ((137)Cs and (134)Cs) were transported across the Pacific toward the North American continent and reached Europe despite dispersion and washout along the route of the contaminated air masses. In Europe, the first signs of the releases were detected 7 days later while the first peak of activity level was observed between March 28th and March 30th. Time variations over a 20-day period and spatial variations across more than 150 sampling locations in Europe made it possible to characterize the contaminated air masses. After the Chernobyl accident, only a few measurements of the gaseous (131)I fraction were conducted compared to the number of measurements for the particulate fraction. Several studies had already pointed out the importance of the gaseous (131)I and the large underestimation of the total (131)I airborne activity level, and subsequent calculations of inhalation dose, if neglected. The measurements made across Europe following the releases from the Fukushima NPP reactors have provided a significant amount of new data on the ratio of the gaseous (131)I fraction to total (131)I, both on a spatial scale and its temporal variation. It can be pointed out that during the Fukushima event, the (134)Cs to (137)Cs ratio proved to be different from that observed after the Chernobyl accident. The data set provided in this paper is the most comprehensive survey of the main relevant airborne radionuclides from the Fukushima reactors, measured across Europe. A rough estimate of the total (131)I inventory that has passed over Europe during this period was <1% of the released amount. According to the measurements, airborne activity levels remain of no concern for public health in Europe.

334 citations


Journal ArticleDOI
TL;DR: A unified theoretical framework-based on a general Lyapunov-like function-that, upon slight modification, allows to analyze the stability of all the schemes.

Journal ArticleDOI
TL;DR: An energy management system (EMS) aiming at optimizing the SG's operation, which behaves as a sort of aggregator of distributed energy resources allowing the SG to participate in the open market and improve the grid resilience and flexibility.
Abstract: The integration of renewable energy systems (RESs) in smart grids (SGs) is a challenging task, mainly due to the intermittent and unpredictable nature of the sources, typically wind or sun. Another issue concerns the way to support the consumers' participation in the electricity market aiming at minimizing the costs of the global energy consumption. This paper proposes an energy management system (EMS) aiming at optimizing the SG's operation. The EMS behaves as a sort of aggregator of distributed energy resources allowing the SG to participate in the open market. By integrating demand side management (DSM) and active management schemes (AMS), it allows a better exploitation of renewable energy sources and a reduction of the customers' energy consumption costs with both economic and environmental benefits. It can also improve the grid resilience and flexibility through the active participation of distribution system operators (DSOs) and electricity supply/demand that, according to their preferences and costs, respond to real-time price signals using market processes. The efficiency of the proposed EMS is verified on a 23-bus 11-kV distribution network.

Journal ArticleDOI
TL;DR: In this paper, a classification of green vertical systems for buildings is presented to facilitate the identification and differentiation between them, which is also essential to compare future research results relating to their operation.

Journal ArticleDOI
TL;DR: In this paper, the occurrence of clogging is placed into the context of various design and operational parameters such as wastewater characteristics, upstream treatment processes, intermittent or continuous operation, influent distribution, and media type.

Journal ArticleDOI
TL;DR: The existence of localized modes supported by the PT-symmetric nonlinear lattices is reported in this article, and the system considered reveals unusual properties: unlike other typical dissipative systems, it possesses families (branch) of solutions, which can be parametrized by the propagation constant.
Abstract: The existence of localized modes supported by the $\mathcal{PT}$-symmetric nonlinear lattices is reported. The system considered reveals unusual properties: unlike other typical dissipative systems, it possesses families (branches) of solutions, which can be parametrized by the propagation constant; relatively narrow localized modes appear to be stable, even when the conservative nonlinear lattice potential is absent; and finally, the system supports stable multipole solutions.

Journal ArticleDOI
TL;DR: This paper proposes a methodology and presents a working prototype system for automatic detection and resolution of bottlenecks in a multi-tier Web application hosted on a cloud in order to satisfy specific maximum response time requirements.

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the topologies of multiterminal HVDC-VSC transmission systems for large offshore wind farms, particularly the maximum power loss allowed in the event of a fault.

Journal ArticleDOI
TL;DR: An overview of the various aspects of reliability prediction of high power Insulated Gate Bipolar Transistors (IGBTs) in the context of wind power applications is presented.

Journal ArticleDOI
TL;DR: The lipid concentration of substrate and the structure of the microbial community are the main limiting factors for a successful anaerobic treatment of fresh slaughterhouse waste.

Journal ArticleDOI
04 Feb 2011-PLOS ONE
TL;DR: An objective index based in the analysis of double-pass retinal images to classify cataract patients is introduced, which is robust and fully based in objective measurements; i.e., not depending on subjective decisions.
Abstract: Purpose To propose a new objective scatter index (OSI) based in the analysis of double-pass images of a point source to rank and classify cataract patients. This classification scheme is compared with a current subjective system.

Journal ArticleDOI
TL;DR: The exothermia and setting kinetics of the new cement formulations were tailored to comply with clinical requirements by adjusting the granularity of the phosphate salt and by using sodium borate as a retardant.

Journal ArticleDOI
TL;DR: An effective system for estimate of blood glucose and blood pressure from a photoplethysmograph and machine learning techniques that complies with the grade B protocol of the British Hypertension society for the blood pressure and only in 1.9% of the cases did not detect hypoglycemia or hyperglycemia.

Journal ArticleDOI
TL;DR: In this paper, the authors derived the flow stress of a 17-4 PH stainless steel during hot compression testing using the classical hyperbolic sine equation and the self-diffusion activation energy.

Journal ArticleDOI
15 Feb 2011
TL;DR: In this paper, a systematic method for studying local and global bifurcations in non-smooth dynamical systems was developed, which dealt with the classification and characterization of generic codimension-2 singularities of planar Filippov Systems.
Abstract: In this article some qualitative and geometric aspects of non-smooth dynamical systems theory are discussed. The main aim of this article is to develop a systematic method for studying local (and global) bifurcations in non-smooth dynamical systems. Our results deal with the classification and characterization of generic codimension-2 singularities of planar Filippov Systems as well as the presentation of the bifurcation diagrams and some dynamical consequences.

Journal ArticleDOI
TL;DR: PENEASY and PENEASYLINAC can simulate the considered Varian Clinacs both in an accurate and efficient manner and the contribution of several VRTs to the computing speed of the more demanding off-axis case is analyzed.
Abstract: Purpose: Two new codes,PENEASY and PENEASYLINAC, which automate the Monte Carlo simulation of Varian Clinacs of the 600, 1800, 2100, and 2300 series, together with their electron applicators and multileaf collimators, are introduced. The challenging case of a relatively small and far-from-axis field has been studied with these tools. Methods: PENEASY is a modular, general-purpose main program for the PENELOPEMonte Carlo system that includes various source models, tallies and variance-reduction techniques (VRT). The code includes a new geometry model that allows the superposition of voxels and objects limited by quadric surfaces. A variant of the VRT known as particle splitting, called fan splitting, is also introduced. PENEASYLINAC, in turn, automatically generates detailed geometry and configuration files to simulate linacs with PENEASY. These tools are applied to the generation of phase-space files, and of the corresponding absorbed dose distributions in water, for two 6 MV photon beams from a Varian Clinac 2100 C/D: a 40 × 40 cm2 centered field; and a 3 × 5 cm2 field centered at (4.5, −11.5) cm from the beam central axis. This latter configuration implies the largest possible over-traveling values of two of the jaws. Simulation results for the depth dose and lateral profiles at various depths are compared, by using the gamma index, with experimental values obtained with a PTW 31002 ionization chamber. The contribution of several VRTs to the computing speed of the more demanding off-axis case is analyzed. Results: For the 40 × 40 cm2 field, the percentages γ1 and γ1.2 of voxels with gamma indices (using 0.2 cm and 2% criteria) larger than unity and larger than 1.2 are 0.2% and 0%, respectively. For the 3 × 5 cm2 field, γ1 = 0%. These figures indicate an excellent agreement between simulation and experiment. The dose distribution for the off-axis case with voxels of 2.5 × 2.5 × 2.5 mm3 and an average standard statistical uncertainty of 2% (1σ) is computed in 3.1 h on a single core of a 2.8 GHz Intel Core 2 Duo processor. This result is obtained with the optimal combination of the tested VRTs. In particular, fan splitting for the off-axis case accelerates execution by a factor of 240 with respect to standard particle splitting. Conclusions: PENEASY and PENEASYLINAC can simulate the considered Varian Clinacs both in an accurate and efficient manner. Fan splitting is crucial to achieve simulation results for the off-axis field in an affordable amount of CPU time. Work to include Elekta linacs and to develop a graphical interface that will facilitate user input is underway.

Journal ArticleDOI
TL;DR: In this article, the use of principal component analysis (PCA) and T2 and Q-statistic measures to detect and distinguish damages in structures has been explored, and two structures are used for expe...
Abstract: This article explores the use of principal component analysis (PCA) and T2 and Q-statistic measures to detect and distinguish damages in structures. For this study, two structures are used for expe...

Journal ArticleDOI
TL;DR: In this article, the hot deformation behavior of a medium carbon microalloyed steel was studied using the hot compression flow curves corresponding to the temperature range of 850-1150°C under strain rates from 0.0001 to 3 s −1.
Abstract: The hot deformation behavior of a medium carbon microalloyed steel was studied using the hot compression flow curves corresponding to the temperature range of 850–1150 °C under strain rates from 0.0001 to 3 s −1 . A step-by-step procedure for data analysis in hot deformation was also given. The work hardening rate versus stress curves were used to reveal if dynamic recrystallization (DRX) occurred. The application of constitutive equations to determine the hot working constants of this material was critically discussed. Furthermore, the effect of Zener–Hollomon parameter ( Z ) on the characteristic points of flow curves was studied using the power law relation. The deformation activation energy of this steel was determined as 394 kJ/mol and the normalized critical stress and strain for initiation of DRX were found to be 0.89 and 0.62, respectively. Some behaviors were also compared to other steels.

Journal ArticleDOI
TL;DR: Simulations of a simple rate equation model show good qualitative agreement with the experiments and provide a framework for understanding the observed extreme amplitude events as the result of a deterministic nonlinear process.
Abstract: Experimental observations of rare giant pulses or rogue waves were done in the output intensity of an optically injected semiconductor laser. The long-tailed probability distribution function of the pulse amplitude displays clear non-Gaussian features that confirm the rogue wave character of the intensity pulsations. Simulations of a simple rate equation model show good qualitative agreement with the experiments and provide a framework for understanding the observed extreme amplitude events as the result of a deterministic nonlinear process.

Journal ArticleDOI
TL;DR: This report shows that the photon-counting encrypted image is generated with few photons and appears sparse; however, it has sufficient information for decryption and authentication and may make the verification process more robust against attacks.
Abstract: Photon-counting imaging is integrated with optical encryption for information authentication. An image is double-random-phase encrypted, and a photon-limited encrypted image is obtained. The photon-counting encrypted image is generated with few photons and appears sparse; however, we show that it has sufficient information for decryption and authentication. The decrypted image cannot be easily visualized so that an additional layer of information protection is achieved. The authentication is carried out by recognition algorithms. This approach may make the verification process more robust against attacks. To the best of our knowledge, this is the first report on integrating photon-counting imaging and encryption for authentication.

Journal ArticleDOI
TL;DR: The main goal of this paper is to provide a summary of the current knowledge of the ionosphere as it relates to space geodetic techniques, especially the most informative technology, global navigation satellite systems (GNSS), specifically the fully deployed and operational global positioning system (GPS).
Abstract: The main goal of this paper is to provide a summary of our current knowledge of the ionosphere as it relates to space geodetic techniques, especially the most informative technology, global navigation satellite systems (GNSS), specifically the fully deployed and operational global positioning system (GPS). As such, the main relevant modeling points are discussed, and the corresponding results of ionospheric monitoring are related, which were mostly computed using GPS data and based on the direct experience of the authors. We address various phenomena such as horizontal and vertical ionospheric morphology in quiet conditions, traveling ionospheric disturbances, solar flares, ionospheric storms and scintillation. Finally, we also tackle the question of how improved knowledge of ionospheric conditions, especially in terms of an accurate understanding of the distribution of free electrons, can improve space geodetic techniques at different levels, such as higher-order ionospheric effects, precise GNSS navigation, single-antenna GNSS orientation and real-time GNSS meteorology.