scispace - formally typeset
Search or ask a question

Showing papers by "Raytheon published in 2014"


Journal ArticleDOI
TL;DR: In this article, the authors presented uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging.
Abstract: We present uniformly measured star formation histories (SFHs) of 40 Local Group (LG) dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with τ ∼ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs, and dwarf ellipticals can be approximated by the combination of an exponentially declining SFH (τ ∼ 3-4 Gyr) for lookback ages >10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z = 2 ranges considerably (80% for galaxies with M 10{sup 7} M{sub ☉}) and is largely explained by environment; (5) the distinction between 'ultra-faint' and 'classical' dSphs is arbitrary; (6) LG dIrrs formed amore » significantly higher fraction of stellar mass prior to z = 2 than the Sloan Digital Sky Survey galaxies from Leitner and the SFHs from the abundance matching models of Behroozi et al. This may indicate higher than expected star formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.« less

401 citations


Journal ArticleDOI
TL;DR: Thermal conductivity data suggest that, unlike in drawn crystalline fibres, in the authors' fibres the dominant phonon-scattering process at room temperature is still related to structural disorder, so effective heat transfer at critical contacts in electronic devices operating under high-power conditions at 200 °C over numerous cycles is demonstrated.
Abstract: Polymers are usually considered thermal insulators, because the amorphous arrangement of the molecular chains reduces the mean free path of heat-conducting phonons. The most common method to increase thermal conductivity is to draw polymeric fibres, which increases chain alignment and crystallinity, but creates a material that currently has limited thermal applications. Here we show that pure polythiophene nanofibres can have a thermal conductivity up to ∼ 4.4 W m(-1) K(-1) (more than 20 times higher than the bulk polymer value) while remaining amorphous. This enhancement results from significant molecular chain orientation along the fibre axis that is obtained during electropolymerization using nanoscale templates. Thermal conductivity data suggest that, unlike in drawn crystalline fibres, in our fibres the dominant phonon-scattering process at room temperature is still related to structural disorder. Using vertically aligned arrays of nanofibres, we demonstrate effective heat transfer at critical contacts in electronic devices operating under high-power conditions at 200 °C over numerous cycles.

332 citations


Journal ArticleDOI
TL;DR: In this paper, the authors presented uniformly measured star formation histories (SFHs) of 40 Local Group dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging.
Abstract: We present uniformly measured star formation histories (SFHs) of 40 Local Group dwarf galaxies based on color-magnitude diagram (CMD) analysis from archival Hubble Space Telescope imaging. We demonstrate that accurate SFHs can be recovered from CMDs that do not reach the oldest main sequence turn-off (MSTO), but emphasize that the oldest MSTO is critical for precisely constraining the earliest epochs of star formation. We find that: (1) the average lifetime SFHs of dwarf spheroidals (dSphs) can be approximated by an exponentially declining SFH with $\tau$ $\sim$ 5 Gyr; (2) lower luminosity dSphs are less likely to have extended SFHs than more luminous dSphs; (3) the average SFHs of dwarf irregulars (dIrrs), transition dwarfs (dTrans), and dwarf ellipticals (dEs) can be approximated by the combination of an exponentially declining SFH ($\tau$ $\sim$ 3-4 Gyr) for lookback ages $>$ 10-12 Gyr ago and a constant SFH thereafter; (4) the observed fraction of stellar mass formed prior to z=2 ranges considerably (80\% for galaxies with M $ $10$^7$ M$_{\odot}$) and is largely explained by environment; (5) the distinction between "ultra-faint" and "classical" dSphs is arbitrary; (6) LG dIrrs formed a significantly higher fraction of stellar mass prior to z=2 than the SDSS galaxies from Leiter 2012 and the SFHs from the abundance matching models of Behroozi et al. 2013. This may indicate higher than expected star-formation efficiencies at early times in low mass galaxies. Finally, we provide all the SFHs in tabulated electronic format for use by the community.

292 citations


Journal ArticleDOI
TL;DR: In this paper, the authors measured stellar photometry with the Hubble Space Telescope Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys (ACFS) in near ultraviolet (F275W, F336W), optical (F475W,F814W), and near infrared (F110W, f160W) bands for 117 million resolved stars in M31.
Abstract: We have measured stellar photometry with the Hubble Space Telescope Wide Field Camera 3 (WFC3) and Advanced Camera for Surveys in near ultraviolet (F275W, F336W), optical (F475W, F814W), and near infrared (F110W, F160W) bands for 117 million resolved stars in M31. As part of the Panchromatic Hubble Andromeda Treasury survey, we measured photometry with simultaneous point-spread function (PSF) fitting across all bands and at all source positions after precise astrometric image alignment (<5-10 mas accuracy). In the outer disk, the photometry reaches a completeness-limited depth of F475W ~ 28, while in the crowded, high surface brightness bulge, the photometry reaches F475W ~ 25. We find that simultaneous photometry and optimized measurement parameters significantly increase the detection limit of the lowest-resolution filters (WFC3/IR) providing color-magnitude diagrams (CMDs) that are up to 2.5 mag deeper when compared with CMDs from WFC3/IR photometry alone. We present extensive analysis of the data quality including comparisons of luminosity functions and repeat measurements, and we use artificial star tests to quantify photometric completeness, uncertainties and biases. We find that the largest sources of systematic error in the photometry are due to spatial variations in the PSF models and charge transfer efficiency corrections. This stellar catalog is the largest ever produced for equidistant sources, and is publicly available for download by the community.

194 citations


Journal ArticleDOI
TL;DR: In this article, the authors used the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm to investigate the origin of the submillimeter excess, defined as the sub-millimeter emission above that expected from SMBB models fit to observations <200 μm.
Abstract: The dust properties in the Large and Small Magellanic clouds (LMC/SMC) are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 μm. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a power-law emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models, we investigate the origin of the submillimeter excess, defined as the submillimeter emission above that expected from SMBB models fit to observations <200 μm. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 μm submillimeter excesses of 27% and 43% for the LMC and SMC, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 ± 1.7) × 105 and (8.3 ± 2.1) × 104 M ☉ for the LMC and SMC, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.

169 citations


Journal ArticleDOI
TL;DR: In this article, the authors search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M {sub ☉}).
Abstract: We search for signatures of reionization in the star formation histories (SFHs) of 38 Local Group dwarf galaxies (10{sup 4} < M{sub *} < 10{sup 9} M{sub ☉}). The SFHs are derived from color-magnitude diagrams using archival Hubble Space Telescope/Wide Field Planetary Camera 2 imaging. Only five quenched galaxies (And V, And VI, And XIII, Leo IV, and Hercules) are consistent with forming the bulk of their stars before reionization, when full uncertainties are considered. Observations of 13 of the predicted 'true fossils' identified by Bovill and Ricotti show that only two (Hercules and Leo IV) indicate star formation quenched by reionization. However, both are within the virial radius of the Milky Way and evidence of tidal disturbance complicates this interpretation. We argue that the late-time gas capture scenario posited by Ricotti for the low mass, gas-rich, and star-forming fossil candidate Leo T is observationally indistinguishable from simple gas retention. Given the ambiguity between environmental effects and reionization, the best reionization fossil candidates are quenched low mass field galaxies (e.g., KKR 25).

140 citations


Proceedings ArticleDOI
23 Jun 2014
TL;DR: In this paper, the authors leverage video and image collections with free-form text descriptions from widely available web sources to learn a large bank of concepts, in addition to using several off-the-shelf concept detectors, speech, and video text for representing videos.
Abstract: Current state-of-the-art systems for visual content analysis require large training sets for each class of interest, and performance degrades rapidly with fewer examples. In this paper, we present a general framework for the zeroshot learning problem of performing high-level event detection with no training exemplars, using only textual descriptions. This task goes beyond the traditional zero-shot framework of adapting a given set of classes with training data to unseen classes. We leverage video and image collections with free-form text descriptions from widely available web sources to learn a large bank of concepts, in addition to using several off-the-shelf concept detectors, speech, and video text for representing videos. We utilize natural language processing technologies to generate event description features. The extracted features are then projected to a common high-dimensional space using text expansion, and similarity is computed in this space. We present extensive experimental results on the large TRECVID MED [26] corpus to demonstrate our approach. Our results show that the proposed concept detection methods significantly outperform current attribute classifiers such as Classemes [34], ObjectBank [21], and SUN attributes[28] . Further, we find that fusion, both within as well as between modalities, is crucial for optimal performance.

128 citations


Journal ArticleDOI
TL;DR: The Alcator C-Mod tokamak as discussed by the authors is a high-field toroidal confinement device that uses high-power radio frequency (RF) waves for heating and current drive with innovative launching structures.
Abstract: The object of this review is to summarize the achievements of research on the Alcator C-Mod tokamak [Hutchinson et al., Phys. Plasmas 1, 1511 (1994) and Marmar, Fusion Sci. Technol. 51, 261 (2007)] and to place that research in the context of the quest for practical fusion energy. C-Mod is a compact, high-field tokamak, whose unique design and operating parameters have produced a wealth of new and important results since it began operation in 1993, contributing data that extends tests of critical physical models into new parameter ranges and into new regimes. Using only high-power radio frequency (RF) waves for heating and current drive with innovative launching structures, C-Mod operates routinely at reactor level power densities and achieves plasma pressures higher than any other toroidal confinement device. C-Mod spearheaded the development of the vertical-target divertor and has always operated with high-Z metal plasma facing components—approaches subsequently adopted for ITER. C-Mod has made ground-breaking discoveries in divertor physics and plasma-material interactions at reactor-like power and particle fluxes and elucidated the critical role of cross-field transport in divertor operation, edge flows and the tokamak density limit. C-Mod developed the I-mode and the Enhanced Dα H-mode regimes, which have high performance without large edge localized modes and with pedestal transport self-regulated by short-wavelength electromagnetic waves. C-Mod has carried out pioneering studies of intrinsic rotation and demonstrated that self-generated flow shear can be strong enough in some cases to significantly modify transport. C-Mod made the first quantitative link between the pedestal temperature and the H-mode's performance, showing that the observed self-similar temperature profiles were consistent with critical-gradient-length theories and followed up with quantitative tests of nonlinear gyrokinetic models. RF research highlights include direct experimental observation of ion cyclotron range of frequency (ICRF) mode-conversion, ICRF flow drive, demonstration of lower-hybrid current drive at ITER-like densities and fields and, using a set of novel diagnostics, extensive validation of advanced RF codes. Disruption studies on C-Mod provided the first observation of non-axisymmetric halo currents and non-axisymmetric radiation in mitigated disruptions. A summary of important achievements and discoveries are included.

113 citations


Journal ArticleDOI
TL;DR: In this article, the authors measured the tip of the red giant branch distances to nine galaxies in the direction to the Virgo cluster using the Advanced Camera for Surveys on the Hubble Space Telescope.
Abstract: We measured the tip of the red giant branch distances to nine galaxies in the direction to the Virgo cluster using the Advanced Camera for Surveys on the Hubble Space Telescope. These distances put seven galaxies (GR 34, UGC 7512, NGC 4517, IC 3583, NGC 4600, VCC 2037, and KDG 215) in front of Virgo and two galaxies (IC 3023 and KDG 177) likely inside the cluster. Distances and radial velocities of the galaxies situated between us and the Virgo core clearly exhibit the infall phenomenon toward the cluster. In the case of spherically symmetric radial infall, we estimate the radius of the "zero-velocity surface" to be (7.2 ± 0.7) Mpc, which yields a total mass of the Virgo cluster of (8.0 ± 2.3) × 1014 M ☉, in good agreement with its virial mass estimates. We conclude that the Virgo outskirts do not contain significant amounts of dark matter beyond their virial radius.

104 citations


Journal ArticleDOI
TL;DR: In this article, the authors measured the thermal resistances of GaN transition layers for Si and SiC substrates in the temperature range $300lTl550$ K using time-domain thermoreflectance.
Abstract: Strained transition layers, which are common for heteroepitaxial growth of functional semiconductors on foreign substrates, include high defect densities that impair heat conduction. Here, we measure the thermal resistances of AlN transition layers for GaN on Si and SiC substrates in the temperature range $300lTl550$ K using time-domain thermoreflectance. We propose a model for the effective resistance of such transition films, which accounts for the coupled effects of phonon scattering on defects and the two interfaces. The data are consistent with this model using point defects at concentrations near 10${}^{20}$ cm${}^{\ensuremath{-}3}$ and transmission coefficients based on the diffuse mismatch model. The data can be also described using lower transmission coefficients and eliminating the defects in the AlN. The data and modeling support the hypothesis that point defect scattering in the AlN film dominates the resistance, but may also be consistent with a high presence of near-interfacial defects in the bounding films.

92 citations


Journal ArticleDOI
TL;DR: In this paper, the authors analyzed the numbers and luminosity functions of thermally pulsating asymptotic giant branch (TP-AGB) stars in six quiescent, low metallicity ([Fe/H] −0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters.
Abstract: The evolution and lifetimes of thermally pulsating asymptotic giant branch (TP-AGB) stars suffer from significant uncertainties. In this work, we analyze the numbers and luminosity functions of TP-AGB stars in six quiescent, low metallicity ([Fe/H] –0.86) galaxies taken from the ACS Nearby Galaxy Survey Treasury sample, using Hubble Space Telescope (HST) photometry in both optical and near-infrared filters. The galaxies contain over 1000 TP-AGB stars (at least 60 per field). We compare the observed TP-AGB luminosity functions and relative numbers of TP-AGB and red giant branch (RGB) stars, N TP-AGB/N RGB, to models generated from different suites of TP-AGB evolutionary tracks after adopting star formation histories derived from the HST deep optical observations. We test various mass-loss prescriptions that differ in their treatments of mass loss before the onset of dust-driven winds (pre-dust). These comparisons confirm that pre-dust mass loss is important, since models that neglect pre-dust mass loss fail to explain the observed N TP-AGB/N RGB ratio or the luminosity functions. In contrast, models with more efficient pre-dust mass loss produce results consistent with observations. We find that for [Fe/H] –0.86, lower mass TP-AGB stars (M 1 M ☉) must have lifetimes of ~0.5 Myr and higher masses (M 3 M ☉) must have lifetimes 1.2 Myr. In addition, assuming our best-fitting mass-loss prescription, we show that the third dredge-up has no significant effect on TP-AGB lifetimes in this mass and metallicity range.

Journal ArticleDOI
TL;DR: In this article, the panchromatic spectral energy distributions (SEDs) of the Local Volume Legacy (LVL) survey were used to derive global physical properties (i.e., star formation rate, stellar mass, internal extinction due to dust).
Abstract: We present the panchromatic spectral energy distributions (SEDs) of the Local Volume Legacy (LVL) survey which consists of 258 nearby galaxies (D <11 Mpc). The wavelength coverage spans the ultraviolet to the infrared (1500 u to 24 µm) which is utilized to derive global physical properties (i.e., star formation rate, stellar mass, internal extinction due to dust.). With these data, we find color-color relationships and correlated trends between observed and physical properties (i.e., optical magnitudes and dust properties, optical color and specific star formation rate, and ultravioletinfrared color and metallicity). The SEDs are binned by different galaxy properties to reveal how each property affects the observed shape of these SEDs. In addition, due to the volume-limited nature of LVL, we utilize the dwarf-dominated galaxy sample to test star formation relationships established with higher-mass galaxy samples. We find good agreement with the star-forming “main-sequence” relationship, but find a systematic deviation in the infrared “main-sequence” at low luminosities. This deviation is attributed to suppressed polycyclic aromatic hydrocarbon (PAH) formation in low metallicity environments and/or the destruction of PAHs in more intense radiation fields occurring near a suggested threshold in sSFR at a value of log(sSF R) » –10.2.

Journal ArticleDOI
TL;DR: The Visible Infrared Imager Radiometer Suite (VIIRS) Cloud Mask (VCM) as discussed by the authors is an intermediate product between the production of VIIRS sensor data records and 22 downstream Environmental Data Records that each depends upon the VCM output.
Abstract: The Visible Infrared Imager Radiometer Suite (VIIRS) Cloud Mask (VCM) determines, on a pixel-by-pixel basis, whether or not a given location contains cloud. The VCM serves as an intermediate product (IP) between the production of VIIRS sensor data records and 22 downstream Environmental Data Records that each depends upon the VCM output. As such, the validation of the VCM IP is critical to the success of the Suomi National Polar-orbiting Partnership (S-NPP) product suite. The methods used to validate the VCM and the current results are presented in this paper. Detailed analyses of golden granules along with tools providing deep insights into granule performance, and specific cloud detection tests reveal the details behind a given granule's performance. Matchup results with CALIPSO, in turn, indicate the large-scale performance of the VCM and whether or not it is meeting its specifications. Comparisons with other cloud masks indicate comparable performance for the determination of clear pixels. As of September 2013 the VCM is either meeting or within 2% of all of its documented requirements.

Journal ArticleDOI
TL;DR: In this article, the authors used the HERITAGE catalog of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS) and Spectral and Photometric Imaging Receiver (SPIRE) cameras.
Abstract: Observations from the HERschel Inventory of the Agents of Galaxy Evolution (HERITAGE) have been used to identify dusty populations of sources in the Large and Small Magellanic Clouds (LMC and SMC). We conducted the study using the HERITAGE catalogs of point sources available from the Herschel Science Center from both the Photodetector Array Camera and Spectrometer (PACS; 100 and 160 μm) and Spectral and Photometric Imaging Receiver (SPIRE; 250, 350, and 500 μm) cameras. These catalogs are matched to each other to create a Herschel band-merged catalog and then further matched to archival Spitzer IRAC and MIPS catalogs from the Spitzer Surveying the Agents of Galaxy Evolution (SAGE) and SAGE-SMC surveys to create single mid- to far-infrared (far-IR) point source catalogs that span the wavelength range from 3.6 to 500 μm. There are 35,322 unique sources in the LMC and 7503 in the SMC. To be bright in the FIR, a source must be very dusty, and so the sources in the HERITAGE catalogs represent the dustiest populations of sources. The brightest HERITAGE sources are dominated by young stellar objects (YSOs), and the dimmest by background galaxies. We identify the sources most likely to be background galaxies by first considering their morphology (distant galaxies are point-like at the resolution of Herschel) and then comparing the flux distribution to that of the Herschel Astrophysical Terahertz Large Area Survey (ATLAS) survey of galaxies. We find a total of 9745 background galaxy candidates in the LMC HERITAGE images and 5111 in the SMC images, in agreement with the number predicted by extrapolating from the ATLAS flux distribution. The majority of the Magellanic Cloud-residing sources are either very young, embedded forming stars or dusty clumps of the interstellar medium. Using the presence of 24 μm emission as a tracer of star formation, we identify 3518 YSO candidates in the LMC and 663 in the SMC. There are far fewer far-IR bright YSOs in the SMC than the LMC due to both the SMCʼs smaller size and its lower dust content. The YSO candidate lists may be contaminated at low flux levels by background galaxies, and so we differentiate between sources with a high ("probable") and moderate ("possible") likelihood of being a YSO. There are 2493/425 probable YSO candidates in the LMC/SMC. Approximately 73% of the Herschel YSO candidates are newly identified in the LMC, and 35% in the SMC. We further identify a small population of dusty objects in the late stages of stellar evolution including extreme and post-asymptotic giant branch, planetary nebulae, and supernova remnants. These populations are identified by matching the HERITAGE catalogs to lists of previously identified objects in the literature. Approximately half of the LMC sources and one quarter of the SMC sources are too faint to obtain accurate ample FIR photometry and are unclassified.

Journal ArticleDOI
TL;DR: In this paper, an analysis of the star formation history (SFH) of a field near the half-light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging is presented.
Abstract: We present an analysis of the star formation history (SFH) of a field near the half-light radius in the Local Group dwarf irregular galaxy IC 1613 based on deep Hubble Space Telescope Advanced Camera for Surveys imaging. Our observations reach the oldest main sequence turn-off, allowing a time resolution at the oldest ages of ~1 Gyr. Our analysis shows that the SFH of the observed field in IC 1613 is consistent with being constant over the entire lifetime of the galaxy. These observations rule out an early dominant episode of star formation in IC 1613. We compare the SFH of IC 1613 with expectations from cosmological models. Since most of the mass is in place at early times for low-mass halos, a naive expectation is that most of the star formation should have taken place at early times. Models in which star formation follows mass accretion result in too many stars formed early and gas mass fractions that are too low today (the "over-cooling problem"). The depth of the present photometry of IC 1613 shows that, at a resolution of ~1 Gyr, the star formation rate is consistent with being constant, at even the earliest times, which is difficult to achieve in models where star formation follows mass assembly. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555. These observations are associated with program 10505.

Patent
01 May 2014
TL;DR: In this paper, a gas turbine engine has a fan, first and second compressor stages, and a gear train, such that the fan and first compressor stage rotate in the same direction.
Abstract: A gas turbine engine has a fan, first and second compressor stages, first and second turbine stages. The first turbine stage drives the second compressor stage as a high spool. The second turbine stage drives the first compressor stage as part of a low spool. A gear train drives the fan with the low spool, such that the fan and first compressor stage rotate in the same direction. The high spool operates at higher pressures than the low spool. A lubrication system is also disclosed.

Journal ArticleDOI
TL;DR: This work proposes a novel guard-band-aware channel assignment scheme for DSA systems that reduces the number of required guard channels for a given transmission by exploiting the benefit of utilizing adjacent channels and considering already reserved guard channels.
Abstract: Spectrum access/sharing algorithms for dynamic spectrum access (DSA) networks are often designed without accounting for adjacent-channel interference. In practice, guard bands are needed to prevent such interference. Introducing guard bands naturally constrains the effective use of the spectrum. In this work, we investigate the problem of assigning channels/powers to opportunistic transmissions, while accounting for such a constraint. Specifically, we propose a novel guard-band-aware channel assignment scheme for DSA systems. Our scheme reduces the number of required guard channels for a given transmission by exploiting the benefit of utilizing adjacent channels and considering already reserved guard channels. We analytically formulate the channel access problem as a joint power control and channel assignment optimization problem, with the objective of minimizing the required spectrum resource for a given CR transmission. We show that the optimization problem is a binary linear program (BLP), which is, in general, NP-hard. Accordingly, we present a near-optimal solution based on sequential fixing, where the binary variables are determined iteratively by solving a sequence of linear programs. Based on the proposed channel assignment algorithm, we develop an operational MAC protocol that enables DSA users to dynamically utilize the spectrum. The proposed protocol realizes our channel assignment algorithm in a distributed manner while relying only on information provided by the two communicating users. Simulation results are provided, which verify the effectiveness of our protocol and demonstrate the significant gain achieved through guard-band-aware channel assignment.

Journal ArticleDOI
TL;DR: In this paper, the stellar populations surrounding supernova remnants (SNRs) in M31 and M33 were age-date using the Hubble Space Telescope photometry to measure star formation histories, and the authors applied stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars.
Abstract: Using Hubble Space Telescope photometry to measure star formation histories, we age-date the stellar populations surrounding supernova remnants (SNRs) in M31 and M33. We then apply stellar evolution models to the ages to infer the corresponding masses for their supernova progenitor stars. We analyze 33 M33 SNR progenitors and 29 M31 SNR progenitors in this work. We then combine these measurements with 53 previously published M31 SNR progenitor measurements to bring our total number of progenitor mass estimates to 115. To quantify the mass distributions, we fit power laws of the form dN/dM∝M {sup –α}. Our new larger sample of M31 progenitors follows a distribution with α=4.4{sub −0.4}{sup +0.4}, and the M33 sample follows a distribution with α=3.8{sub −0.5}{sup +0.4}. Thus both samples are consistent within the uncertainties, and the full sample across both galaxies gives α=4.2{sub −0.3}{sup +0.3}. Both the individual and full distributions display a paucity of massive stars when compared to a Salpeter initial mass function, which we would expect to observe if all massive stars exploded as SN that leave behind observable SNR. If we instead fix α = 2.35 and treat the maximum mass as a free parameter, we find M {sub max} ∼ 35-45more » M {sub ☉}, indicative of a potential maximum cutoff mass for SN production. Our results suggest that either SNR surveys are biased against finding objects in the youngest (<10 Myr old) regions, or the highest mass stars do not produce SNe.« less

Journal ArticleDOI
TL;DR: In this paper, a 200-A, all-SiC power module based on bipolar junction transistor devices is described, and the impact of the module is assessed on the performance of a 50-kW dc-dc converter for electric vehicle applications, particularly the overall weight and efficiency.
Abstract: The design of a 200-A, all-SiC power-module-based on bipolar junction transistor devices is described, and the impact of the module is assessed on the performance of a 50-kW dc-dc converter for electric vehicle applications, particularly the overall weight and efficiency. Using a hard-switching dual-interleaved topology, which has proven high efficiency and high-power density capability, the operation of a 50-kW, 75-kHz all-SiC converter is compared with that of an insulated-gate bipolar transistor-based silicon converter, switching at 25 kHz, each providing 600-V output. The results show that the total losses are reduced by almost 40%, whilst the overall weight is reduced by 27%, achieving a power density of 10.5 kW/kg. Experimental results of the SiC converter operating at 220-600 V, 52.8 kW are provided, showing an efficiency of 97%.

Proceedings ArticleDOI
04 May 2014
TL;DR: A technique of Within-Class Covariance Correction (WCC) for Linear Discriminant Analysis (LDA) in Speaker Recognition is proposed to perform an unsupervised adaptation of LDA to an unseen data domain, and/or to compensate for speaker population difference among different portions of L DA training dataset.
Abstract: In this paper we propose a technique of Within-Class Covariance Correction (WCC) for Linear Discriminant Analysis (LDA) in Speaker Recognition to perform an unsupervised adaptation of LDA to an unseen data domain, and/or to compensate for speaker population difference among different portions of LDA training dataset. The paper follows on the study of source-normalization and inter-database variability compensation techniques which deal with multimodal distribution of i-vectors. On the DARPA RATS (Robust Automatic Transcription of Speech) task, we show that, with two hours of unsupervised data, we improve the Equal-Error Rate (EER) by 17.5%, and 36% relative on the unmatched and semi-matched conditions, respectively. On the Domain Adaptation Challenge we show up to 70% relative EER reduction and we propose a data clustering procedure to identify the directions of the domain-based variability in the adaptation data.

Journal ArticleDOI
TL;DR: In this article, the authors used resolved stellar photometry measured from archival Hubble Space Telescope imaging to generate color-magnitude diagrams of the stars within 50 pc of the locations of historic core-collapse supernovae that took place in galaxies within 8 Mpc.
Abstract: Using resolved stellar photometry measured from archival Hubble Space Telescope imaging, we generate color-magnitude diagrams of the stars within 50 pc of the locations of historic core-collapse supernovae (SNe) that took place in galaxies within 8 Mpc. We fit these color-magnitude distributions with stellar evolution models to determine the best-fit age distribution of the young population. We then translate these age distributions into probability distributions for the progenitor mass of each SN. The measurements are anchored by the main-sequence stars surrounding the event, making them less sensitive to assumptions about binarity, post-main-sequence evolution, or circumstellar dust. We demonstrate that, in cases where the literature contains masses that have been measured from direct imaging, our measurements are consistent with (but less precise than) these measurements. Using this technique, we constrain the progenitor masses of 17 historic SNe, 11 of which have no previous estimates from direct imaging. Our measurements still allow the possibility that all SN progenitor masses are <20 M {sub ☉}. However, the large uncertainties for the highest-mass progenitors also allow the possibility of no upper-mass cutoff.

Proceedings ArticleDOI
19 May 2014
TL;DR: This work investigates the problem of associating correct labels to different radar tracks, specifically to distinguish UAV tracks among others (such as aircraft and birds), and shows that, with a chosen set of track features, the simulated Uav tracks are correctly labeled with 99% accuracy.
Abstract: With the rapidly growing use of commercial Unmanned Aerial Vehicles (UAVs), integrating civilian UAVs into the controlled airspace seems inevitable. We investigate the problem of associating correct labels to different radar tracks, specifically to distinguish UAV tracks among others (such as aircraft and birds). To this end, three plausible civilian applications involving UAVs are proposed and studied. Then, for each application, a number of UAV tracks are simulated and merged into an existing dataset of real aircraft and bird tracks. We show that, with a chosen set of track features, the simulated UAV tracks are correctly labeled with 99% accuracy.

Journal ArticleDOI
TL;DR: In this paper, the authors obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys.
Abstract: We have obtained deep images of the highly isolated (d = 1 Mpc) Aquarius dwarf irregular galaxy (DDO 210) with the Hubble Space Telescope Advanced Camera for Surveys. The resulting color-magnitude diagram (CMD) reaches more than a magnitude below the oldest main-sequence turnoff, allowing us to derive the star formation history (SFH) over the entire lifetime of the galaxy with a timing precision of ≈10% of the lookback time. Using a maximum likelihood fit to the CMD we find that only ≈10% of all star formation in Aquarius took place more than 10 Gyr ago (lookback time equivalent to redshift z ≈ 2). The star formation rate increased dramatically ≈6-8 Gyr ago (z ≈ 0.7-1.1) and then declined until the present time. The only known galaxy with a more extreme confirmed delay in star formation is Leo A, a galaxy of similar M H I /M , dynamical mass, mean metallicity, and degree of isolation. The delayed stellar mass growth in these galaxies does not track the mean dark matter accretion rate from CDM simulations. The similarities between Leo A and Aquarius suggest that if gas is not removed from dwarf galaxies by interactions or feedback, it can linger for several gigayears without cooling in sufficient quantity to form stars efficiently. We discuss possible causes for the delay in star formation including suppression by reionization and late-time mergers. We find reasonable agreement between our measured SFHs and select cosmological simulations of isolated dwarfs. Because star formation and merger processes are both stochastic in nature, delayed star formation in various degrees is predicted to be a characteristic (but not a universal) feature of isolated small galaxies.

Journal ArticleDOI
TL;DR: In this article, the authors extended the Red Giant Branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3).
Abstract: In this paper, we extend the use of the tip of the red giant branch (TRGB) method to near-infrared wavelengths from the previously used I-band, using the Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3). Upon calibration of a color dependency of the TRGB magnitude, the IR TRGB yields a random uncertainty of ~5% in relative distance. The IR TRGB methodology has an advantage over the previously used Advance Camera for Surveys F606W and F814W filter set for galaxies that suffer from severe extinction. Using the IR TRGB methodology, we obtain distances toward three principal galaxies in the Maffei/IC 342 complex, which are located at low Galactic latitudes. New distance estimates using the TRGB method are 3.45 Mpc for IC 342, 3.37 Mpc for Maffei 1, and 3.52 Mpc for Maffei 2. The uncertainties are dominated by uncertain extinction, especially for Maffei 1 and Maffei 2. Our IR calibration demonstrates the viability of the TRGB methodology for observations with the James Webb Space Telescope.

Journal ArticleDOI
TL;DR: In this article, the authors used data from a statistical sample of 1101 lakes and reservoirs from the 2007 US Environmental Protection Agency National Lakes Assessment (NLA) to develop four indices of physical habitat condition: (1) Lakeshore Anthropogenic Disturbance, (2) Riparian Vegetation Cover Complexity, (3) Littoral Cover Complexy, (4) LITToral-Riparian Habitat Complexity) and (5) Linnland-Littoral-Livestock habitat complexity.
Abstract: Near-shore physical habitat is crucial for supporting biota and ecological processes in lakes. We used data from a statistical sample of 1101 lakes and reservoirs from the 2007 US Environmental Protection Agency National Lakes Assessment (NLA) to develop 4 indices of physical habitat condition: (1) Lakeshore Anthropogenic Disturbance, (2) Riparian Vegetation Cover Complexity, (3) Littoral Cover Complexity, and (4) Littoral–Riparian Habitat Complexity. We compared lake index values with distributions from least-disturbed lakes. Our results form the first US national assessment of lake physical habitat, inferring the condition (with known confidence) of the 49,500 lakes and reservoirs in the conterminous United States with surface areas >4 ha and depths >1 m. Among the physical and chemical characteristics examined by the NLA, near-shore physical habitat was the most extensively altered relative to least-disturbed condition. Riparian Vegetation Cover Complexity was good in 46% (±3%), fair in 18% (±2...

Proceedings ArticleDOI
08 Sep 2014
TL;DR: This work aims to raise the abstraction level for system construction by identifying a collection of general and reusable "building block" algorithms, ensuring that any system constructed from them is guaranteed to rapidly converge to a correct behaviour.
Abstract: The notion of a computational field has been proposed as a unifying abstraction for constructing and reasoning about large and self-organising networks of devices, focusing on the computations and coordination of aggregates of devices instead of individual behaviour. Recently, firm mathematical foundations have been established for this approach, in the form of a minimal universal field calculus and a more restricted syntax that guarantees self-stabilisation. We now aim to raise the abstraction level for system construction by identifying a collection of general and reusable "building block" algorithms. By functional combination of these building blocks, it is possible to construct complex adaptive behaviours. Moreover, the building blocks we present are all self-stabilising, ensuring that any system constructed from them is guaranteed to rapidly converge to a correct behaviour.

Patent
02 Jun 2014
TL;DR: A turbine engine includes an input shaft and a fan shaft rotatable about an axis, and an epicyclic gear train is connected between the shaft and the fan shaft as mentioned in this paper.
Abstract: A turbine engine includes an input shaft and a fan shaft rotatable about an axis. The fan shaft supports fan blades. An epicyclic gear train is connected between the input shaft and the fan shaft. The epicyclic gear train includes a plurality of star gears, a carrier supporting the plurality of star gears, a sun gear that meshes with the plurality of star gears and a ring gear surrounding and meshing with the plurality of star gears such that the sun gear is rotatable in a first direction and the ring gear is rotatable in a second, opposite direction. The ring gear includes first and second portions that each have an inner periphery with teeth. The first and second portions include respective recesses facing one another to provide an internal annular cavity.

Journal ArticleDOI
TL;DR: In this paper, a multiangle phase shift modulation method is proposed which simultaneously achieves bidirectional power control, power sharing, and zero voltage switching (ZVS) of all the electronic devices over the full power range without the need for auxiliary switches.
Abstract: This paper proposes a zero voltage switching (ZVS) technique for bidirectional dc/dc converters. The dc/dc unit considered consists of two distinct bidirectional dc/dc cells paralleled at both input and output and whose two input bridges are coupled by means of passive inductive branches. A multiangle phase-shift modulation method is proposed which simultaneously achieves bidirectional power control, power sharing, and ZVS of all the electronic devices over the full power range without the need for auxiliary switches. Simulation and experimental results are reported for a 2.4 kW dc/dc unit consisting of two paralleled 1.2 kW bidirectional dual-bridge series resonant converter cells.

Journal ArticleDOI
TL;DR: A sensitivity simulation of a severe weather event using real-time MODIS GVF data results in systematic changes to low-level temperature, moisture, and instability fields, and improves the evolution of simulated precipitation.
Abstract: A technique is presented to produce real-time, daily vegetation composites at 0.01 ° resolution ( ~ 1 km) over the Conterminous United States (CONUS) for use in the NASA Land Information System (LIS) and weather prediction models. Green vegetation fraction (GVF) is derived from direct-broadcast swaths of normalized difference vegetation index from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the NASA Earth Observing System satellites. The real-time data and increased resolution compared to the 0.144 ° ( ~ 16 km) resolution monthly GVF climatology in community models result in an improved representation of vegetation in high-resolution models, especially in complex terrain. The MODIS GVF fields show seasonal variations that are similar to the community model climatology, and respond realistically to temperature and precipitation anomalies. The wet spring and summer 2010 over the U.S. Plains led to higher regional GVF than in the climatology. The GVF substantially decreased over the U.S. Southern Plains from 2010 to 2011, consistent with the transition to extreme drought in summer 2011. LIS simulations depict substantial sensitivity to the MODIS GVF, with regional changes in heat fluxes around 100 Wm-2 over the northern U.S. in June 2010. CONUS LIS simulations during the 2010 warm season indicate that the larger MODIS GVF in the western U.S. led to higher latent heat fluxes and initially lower sensible heat fluxes, with a net drying effect on the soil. With time, the drier soil eventually lead to higher mean sensible heat fluxes such that the total surface energy output increased by late summer 2010 over the western U.S. A sensitivity simulation of a severe weather event using real-time MODIS GVF data results in systematic changes to low-level temperature, moisture, and instability fields, and improves the evolution of simulated precipitation.

Patent
13 Mar 2014
TL;DR: A turbofan engine (20) has a fan shaft (120) coupling a fan drive gear system (60) to the fan (28), a low spool comprises a low pressure turbine (50) and a low shaft (56) coupling the low-pressure turbine to the turbine as mentioned in this paper.
Abstract: A turbofan engine (20) has a fan shaft (120) coupling a fan drive gear system (60) to the fan (28). A low spool comprises a low pressure turbine (50) and a low shaft (56) coupling the low pressure turbine to the fan drive gear system. A core spool comprises a high pressure turbine (46), a compressor (44), and a core shaft (52) coupling the high pressure turbine to the core spool compressor. A first bearing (150) engages the fan shaft, the first bearing being a thrust bearing. A second bearing (160) engages the fan shaft on an opposite side of the fan drive gear system from the first bearing, the second bearing being a roller bearing. A third bearing (180) engages the low spool shaft and the fan shaft.