scispace - formally typeset
Search or ask a question
Institution

Technical University of Denmark

EducationKongens Lyngby, Hovedstaden, Denmark
About: Technical University of Denmark is a education organization based out in Kongens Lyngby, Hovedstaden, Denmark. It is known for research contribution in the topics: Population & Catalysis. The organization has 24126 authors who have published 66394 publications receiving 2443649 citations. The organization is also known as: Danmarks Tekniske Universitet & DTU.


Papers
More filters
Journal ArticleDOI
TL;DR: With this apparatus, 50 protein bands from a human serum protein sample were detected by immunoblotting with the retainment of the high resolution of the SDS-PAGE technique.

2,604 citations

Journal ArticleDOI
TL;DR: A new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y, identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt.
Abstract: The widespread use of low-temperature polymer electrolyte membrane fuel cells for mobile applications will require significant reductions in the amount of expensive Pt contained within their cathodes, which drive the oxygen reduction reaction (ORR). Although progress has been made in this respect, further reductions through the development of more active and stable electrocatalysts are still necessary. Here we describe a new set of ORR electrocatalysts consisting of Pd or Pt alloyed with early transition metals such as Sc or Y. They were identified using density functional theory calculations as being the most stable Pt- and Pd-based binary alloys with ORR activity likely to be better than Pt. Electrochemical measurements show that the activity of polycrystalline Pt(3)Sc and Pt(3)Y electrodes is enhanced relative to pure Pt by a factor of 1.5-1.8 and 6-10, respectively, in the range 0.9-0.87 V.

2,588 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: In this article, a review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocells.
Abstract: Due to their abundance, high strength and stiffness, low weight and biodegradability, nano-scale cellulose fiber materials (e.g., microfibrillated cellulose and bacterial cellulose) serve as promising candidates for bio-nanocomposite production. Such new high-value materials are the subject of continuing research and are commercially interesting in terms of new products from the pulp and paper industry and the agricultural sector. Cellulose nanofibers can be extracted from various plant sources and, although the mechanical separation of plant fibers into smaller elementary constituents has typically required high energy input, chemical and/or enzymatic fiber pre-treatments have been developed to overcome this problem. A challenge associated with using nanocellulose in composites is the lack of compatibility with hydrophobic polymers and various chemical modification methods have been explored in order to address this hurdle. This review summarizes progress in nanocellulose preparation with a particular focus on microfibrillated cellulose and also discusses recent developments in bio-nanocomposite fabrication based on nanocellulose.

2,546 citations

Proceedings Article
01 Jul 1998
TL;DR: The transmembrane HMM, TMHMM, correctly predicts the entire topology for 77% of the sequences in a standard dataset of 83 proteins with known topology, and the same accuracy was achieved on a larger dataset of 160 proteins.
Abstract: A novel method to model and predict the location and orientation of alpha helices in membrane- spanning proteins is presented. It is based on a hidden Markov model (HMM) with an architecture that corresponds closely to the biological system. The model is cyclic with 7 types of states for helix core, helix caps on either side, loop on the cytoplasmic side, two loops for the non-cytoplasmic side, and a globular domain state in the middle of each loop. The two loop paths on the non-cytoplasmic side are used to model short and long loops separately, which corresponds biologically to the two known different membrane insertions mechanisms. The close mapping between the biological and computational states allows us to infer which parts of the model architecture are important to capture the information that encodes the membrane topology, and to gain a better understanding of the mechanisms and constraints involved. Models were estimated both by maximum likelihood and a discriminative method, and a method for reassignment of the membrane helix boundaries were developed. In a cross validated test on single sequences, our transmembrane HMM, TMHMM, correctly predicts the entire topology for 77% of the sequences in a standard dataset of 83 proteins with known topology. The same accuracy was achieved on a larger dataset of 160 proteins. These results compare favourably with existing methods.

2,518 citations


Authors

Showing all 24555 results

NameH-indexPapersCitations
Peer Bork206697245427
Jens K. Nørskov184706146151
Jens Nielsen1491752104005
Bernhard O. Palsson14783185051
Jian Yang1421818111166
Kim Overvad139119686018
Bernard Henrissat139593100002
Torben Jørgensen13588386822
Joel N. Hirschhorn133431101061
John W. Hutchinson12941974747
Robert J. Cava125104271819
Robert A. Harrington12478968023
Hans Ulrik Nørgaard-Nielsen12429584595
M. Linden-Vørnle12023580049
Allan Hornstrup11832883519
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

94% related

Texas A&M University
164.3K papers, 5.7M citations

93% related

Georgia Institute of Technology
119K papers, 4.6M citations

93% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

93% related

Spanish National Research Council
220.4K papers, 7.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023252
2022714
20214,533
20204,534
20193,792
20183,665