scispace - formally typeset
Search or ask a question
Institution

Tongji University

EducationShanghai, China
About: Tongji University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Computer science & Population. The organization has 76116 authors who have published 81176 publications receiving 1248911 citations. The organization is also known as: Tongji & Tóngjì Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the effects of mild alkali treatments on the mechanical characteristics and interfacial adhesion of the fibers in a model abaca fiber/epoxy composite system was systematically evaluated.
Abstract: Abaca fibers demonstrate enormous potential as reinforcing agents in composite materials. In this study, abaca fibers were immersed in 5, 10 or 15 wt.% NaOH solutions for 2 h, and the effects of the alkali treatments on the mechanical characteristics and interfacial adhesion of the fibers in a model abaca fiber/epoxy composite system systematically evaluated. After 5 wt.% NaOH treatment, abaca fibers showed increased crystallinity, tensile strength and Young’s modulus compared to untreated fibers, and also improved interfacial shear strength with an epoxy. Stronger alkali treatments negatively impacted fiber stiffness and suitability for composite applications. Results suggest that mild alkali treatments (e.g. 5 wt.% NaOH for 2 h) are highly beneficial for the manufacture of abaca fiber-reinforced polymer composites.

258 citations

Journal ArticleDOI
TL;DR: In this article, simply supported beams were tested using a free vibration method to determine the relationships between damping ratio in small deformation and the size as well as amount of rubber particles in rubberized concrete.

258 citations

Journal ArticleDOI
TL;DR: The data suggest that exosomes from ADSCs can potentially promote wound healing, particularly when overexpressing Nrf2 and therefore that the transplantation of exosome may be suitable for clinical application in the treatment of DFUs.
Abstract: Diabetic foot ulcers (DFU) increase the risks of infection and amputation in patients with diabetes mellitus (DM). The impaired function and senescence of endothelial progenitor cells (EPCs) and high glucose-induced ROS likely exacerbate DFUs. We assessed EPCs in 60 patients with DM in a hospital or primary care setting. We also evaluated the therapeutic effects of exosomes secreted from adipose-derived stem cells (ADSCs) on stress-mediated senescence of EPCs induced by high glucose. Additionally, the effects of exosomes and Nrf2 overexpression in ADSCs were investigated in vitro and in vivo in a diabetic rat model. We found that ADSCs that secreted exosomes promoted proliferation and angiopoiesis in EPCs in a high glucose environment and that overexpression of Nrf2 increased this protective effect. Wounds in the feet of diabetic rats had a significantly reduced ulcerated area when treated with exosomes from ADSCs overexpressing Nrf2. Increased granulation tissue formation, angiogenesis, and levels of growth factor expression as well as reduced levels of inflammation and oxidative stress-related proteins were detected in wound beds. Our data suggest that exosomes from ADSCs can potentially promote wound healing, particularly when overexpressing Nrf2 and therefore that the transplantation of exosomes may be suitable for clinical application in the treatment of DFUs.

258 citations

Journal ArticleDOI
TL;DR: In this paper, three recycled coarse aggregate (RCA) replacement percentages (i.e., 0, 50% and 100%) and two types of steel rebars (plain and deformed) were considered in order to investigate the bond behavior between recycled aggregate concrete (RAC) and rebars.

258 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic properties of graphene are tailored by noncovalent stacking with aromatic molecules through π-π interaction, which can be used for surface patterning, bandgap engineering, surface doping, and applications in nanodevices.
Abstract: Intrinsic graphene is a semimetal or zero bandgap semiconductor, which hinders its applications for nanoelectronics. To develop high-performance nanodevices with graphene, it is necessary to open the bandgap and precisely control the charge carrier type and density. In this perspective, we focus on tailoring the electronic properties of graphene by noncovalent stacking with aromatic molecules through π–π interaction. Different types of molecules (functioning as either an electron donor or acceptor when stacked with graphene) as reported in recent literature are presented regarding surface patterning, bandgap engineering, surface doping, as well as applications in nanodevices, particularly the field-effect transistors (FETs). On the basis of the current progress along this research line, future issues and challenges are also briefly discussed.

258 citations


Authors

Showing all 76610 results

NameH-indexPapersCitations
Gang Chen1673372149819
Yang Yang1642704144071
Georgios B. Giannakis137132173517
Jian Li133286387131
Jianlin Shi12785954862
Zhenyu Zhang118116764887
Ju Li10962346004
Peng Wang108167254529
Qian Wang108214865557
Yan Zhang107241057758
Richard B. Kaner10655766862
Han-Qing Yu10571839735
Wei Zhang104291164923
Fabio Marchesoni10460774687
Feng Li10499560692
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023238
20221,051
20219,715
20208,502
20197,517
20186,352