scispace - formally typeset
Search or ask a question
Institution

Tongji University

EducationShanghai, China
About: Tongji University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Computer science & Population. The organization has 76116 authors who have published 81176 publications receiving 1248911 citations. The organization is also known as: Tongji & Tóngjì Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: A new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules is reported.
Abstract: Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Troger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes. Ion-selective membranes are widely used for water purification and electrochemical energy devices but designing their pore architectures is challenging. Membranes with narrow channels and hydrophilic functionality are shown to exhibit salt ions transport and selectivity towards small organic molecules.

189 citations

Journal ArticleDOI
TL;DR: The generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure.
Abstract: The direct conversion, or transdifferentiation, of non-cardiac cells into cardiomyocytes by forced expression of transcription factors and microRNAs provides promising approaches for cardiac regeneration. However, genetic manipulations raise safety concerns and are thus not desirable in most clinical applications. The discovery of full chemically induced pluripotent stem cells suggest the possibility of replacing transcription factors with chemical cocktails. Here, we report the generation of automatically beating cardiomyocyte-like cells from mouse fibroblasts using only chemical cocktails. These chemical-induced cardiomyocyte-like cells (CiCMs) express cardiomyocyte-specific markers, exhibit sarcomeric organization, and possess typical cardiac calcium flux and electrophysiological features. Genetic lineage tracing confirms the fibroblast origin of these CiCMs. Further studies show the generation of CiCMs passes through a cardiac progenitor stage instead of a pluripotent stage. Bypassing the use of viral-derived factors, this proof of concept study lays a foundation for in vivo cardiac transdifferentiation with pharmacological agents and possibly safer treatment of heart failure.

189 citations

Journal ArticleDOI
Li Jie1, Yi-nan Wu1, Zehua Li1, Bingru Zhang1, Miao Zhu1, Xiao Hu1, Yiming Zhang1, Fengting Li1 
TL;DR: In this paper, a zeolitic imidazolate framework-8 (ZIF-8) was explored for the removal of trace arsenate from water, and the results showed that ZIF8 outperformed some other adsorbents and owned the first and highest reported adsorption capacity (76.5 mg g−1) at a low equilibrium concentration (9.8 μg L−1).
Abstract: The development of highly efficient adsorbents, especially those aimed at the capture of trace (ppb, 10–9) arsenate, is one of the principal challenges in the water treatment field. In this article, zeolitic imidazolate framework-8 (ZIF-8) was explored for the removal of trace arsenate from water. Results showed that ZIF-8 outperformed some other adsorbents and owned the first and highest reported adsorption capacity (76.5 mg g–1) at a low equilibrium concentration (9.8 μg L–1). Satisfactory adsorption properties (adsorption capacity, adsorption rate, adaptability to water environment, regeneration capacity) demonstrated the feasibility of using ZIF-8 as an efficient adsorbent for the removal of aquatic trace arsenate. In addition, Fourier transform infrared (FTIR) and X-ray photoelectron spectroscopy (XPS) spectra revealed the proposed mechanism of As(V) adsorption onto ZIF-8: producing large amounts of external active sites (Zn–OH) through the dissociative adsorption of water and subsequently forming an...

189 citations

Journal ArticleDOI
TL;DR: In this paper, a 1D core-shell structure BaTiO3@Al2O3 nanofibers (BT@Al 2O3 nfs) was synthesized via coaxial electrospinning.
Abstract: Inorganic/polymer nanocomposites, using one-dimensional (1D) core–shell structure BaTiO3@Al2O3 nanofibers (BT@Al2O3 nfs) as fillers and poly(vinylidene fluoride) (PVDF) as the polymer matrix, have been prepared. The core–shell structure BT@Al2O3 nfs have been synthesized via coaxial electrospinning. The breakdown strength (Eb) and discharged energy density of the nanocomposites can be significantly improved by creating an insulating Al2O3 shell layer with moderate dielectric constant on the surfaces of BT nanofibers to form a moderate interfacial area. The Al2O3 shell layer could effectively confine the mobility of charge carriers, which reduces energy loss by reducing the Maxwell–Wagner–Sillars (MWS) interfacial polarization and space charge polarization between the fillers and the polymer matrix. As a result, the nanocomposite films filled with 5 vol% BT@Al2O3 nfs exhibit a excellent discharge energy density of 12.18 J cm−3 at 400 MV m−1, which is ≈254% over bare PVDF (4.8 J cm−3 at 350 MV m−1) and ≈1015% greater than the biaxially oriented polypropylenes (BOPP) (≈1.2 J cm−3 at 640 MV m−1). The work here indicates that this promising state-of-the-art method of preparing high energy density nanocomposites can be used in the next generation of dielectric capacitors.

188 citations

Journal ArticleDOI
TL;DR: S2O82-/Fe2+ oxidation could concurrently degrade COD and ammonia from WAS filtrate, lighten the burden of the subsequent sewage treatment facilities and reduce operational expense, from an environmental and economic perspective, and possesses much greater promise for WAS dewatering.

188 citations


Authors

Showing all 76610 results

NameH-indexPapersCitations
Gang Chen1673372149819
Yang Yang1642704144071
Georgios B. Giannakis137132173517
Jian Li133286387131
Jianlin Shi12785954862
Zhenyu Zhang118116764887
Ju Li10962346004
Peng Wang108167254529
Qian Wang108214865557
Yan Zhang107241057758
Richard B. Kaner10655766862
Han-Qing Yu10571839735
Wei Zhang104291164923
Fabio Marchesoni10460774687
Feng Li10499560692
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023238
20221,051
20219,715
20208,502
20197,517
20186,352