scispace - formally typeset
Search or ask a question
Institution

Tongji University

EducationShanghai, China
About: Tongji University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Computer science & Population. The organization has 76116 authors who have published 81176 publications receiving 1248911 citations. The organization is also known as: Tongji & Tóngjì Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a genetically meaningful decomposition of a series of Late Quaternary loess grain-size records extending across the Chinese Loess Plateau can be accomplished with the end-member modelling algorithm (EMMA).

187 citations

Journal ArticleDOI
TL;DR: For example, in this article, the authors present a set of urban land use maps at the national and global scales that are derived from the same or consistent data sources with similar or compatible classification systems and mapping methods.
Abstract: Land use reflects human activities on land. Urban land use is the highest level human alteration on Earth, and it is rapidly changing due to population increase and urbanization. Urban areas have widespread effects on local hydrology, climate, biodiversity, and food production. However, maps, that contain knowledge on the distribution, pattern and composition of various land use types in urban areas, are limited to city level. The mapping standard on data sources, methods, land use classification schemes varies from city to city, due to differences in financial input and skills of mapping personnel. To address various national and global environmental challenges caused by urbanization, it is important to have urban land uses at the national and global scales that are derived from the same or consistent data sources with the same or compatible classification systems and mapping methods. This is because, only with urban land use maps produced with similar criteria, consistent environmental policies can be made, and action efforts can be compared and assessed for large scale environmental administration. However, despite of the fact that a number of urban-extent maps exist at global scales [3,4], more detailed urban land use maps do not exist at the same scale. Even at big country or regional levels such as for the United States, China and European Union, consistent land use mapping efforts are rare.

187 citations

Journal ArticleDOI
TL;DR: In this article, a high-resolution pollen record was obtained from ODP Site 1144 (water depth 2037 m), northern South China Sea for the last 103 million years according to micropaleontological and isotopic stratigraphy The pollen assemblages are characterized by high proportions of Pinus and herb pollen, and by their frequent alternations.

187 citations

Journal ArticleDOI
TL;DR: The functional roles of linc1281 and its m6A modification in mESCs are elucidated and a novel RNA regulatory mechanism is identified, providing a basis for further exploration of broad RNA epigenetic regulatory patterns.
Abstract: Previous studies have revealed the critical roles of N6-methyladenosine (m6A) modification of mRNA in embryonic stem cells (ESCs), but the biological function of m6A in large intergenic noncoding RNA (lincRNA) is unknown. Here, we showed that the internal m6A modification of linc1281 mediates a competing endogenous RNA (ceRNA) model to regulate mouse ESC (mESC) differentiation. We demonstrated that loss of linc1281 compromises mESC differentiation and that m6A is highly enriched within linc1281 transcripts. Linc1281 with RRACU m6A sequence motifs, but not an m6A-deficient mutant, restored the phenotype in linc1281-depleted mESCs. Mechanistic analyses revealed that linc1281 ensures mESC identity by sequestering pluripotency-related let-7 family microRNAs (miRNAs), and this RNA-RNA interaction is m6A dependent. Collectively, these findings elucidated the functional roles of linc1281 and its m6A modification in mESCs and identified a novel RNA regulatory mechanism, providing a basis for further exploration of broad RNA epigenetic regulatory patterns.

187 citations

Journal ArticleDOI
TL;DR: It can be concluded that SCFAs from alkaline fermentation of waste activated sludge were a superior carbon source for EBPR microorganisms than pure acetic acid.
Abstract: This paper examines the feasibility of using alkaline fermentative short-chain fatty acids (SCFAs) as the carbon sources of enhanced biological phosphorus removal (EBPR) microorganisms. First, the released phosphorus was recovered from the SCFA-containing alkaline fermentation liquid by the formation of struvite precipitation, and 92.8% of the soluble ortho-phosphorus (SOP) could be recovered under conditions of Mg/P = 1.8 (mol/mol), pH 10.0, and a reaction time of 2 min. One reason for a Mg addition required in this study that was higher than the theoretical value was that the organic compounds consumed Mg. Then, two sequencing batch reactors (SBRs) were operated, respectively, with acetic acid and alkaline fermentative SCFAs as the carbon source of EBPR. The transformations of SOP, polyhydroxyalkanoates (PHAs), and glycogen and the removal of phosphorus were compared between two SBRs. It was observed that the phosphorus removal efficiency was around 98% with the fermentative SCFAs, and about 71% with ac...

187 citations


Authors

Showing all 76610 results

NameH-indexPapersCitations
Gang Chen1673372149819
Yang Yang1642704144071
Georgios B. Giannakis137132173517
Jian Li133286387131
Jianlin Shi12785954862
Zhenyu Zhang118116764887
Ju Li10962346004
Peng Wang108167254529
Qian Wang108214865557
Yan Zhang107241057758
Richard B. Kaner10655766862
Han-Qing Yu10571839735
Wei Zhang104291164923
Fabio Marchesoni10460774687
Feng Li10499560692
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023238
20221,051
20219,715
20208,502
20197,517
20186,352