scispace - formally typeset
Search or ask a question
Institution

Tongji University

EducationShanghai, China
About: Tongji University is a education organization based out in Shanghai, China. It is known for research contribution in the topics: Computer science & Population. The organization has 76116 authors who have published 81176 publications receiving 1248911 citations. The organization is also known as: Tongji & Tóngjì Dàxué.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the degradation mechanism of a proton exchange membrane fuel cell (PEMFC) under start-stop conditions is discussed. But, the degradation process is not discussed in detail.

258 citations

Journal ArticleDOI
TL;DR: The broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors and is distinct from other broad epigenetic features, such as super-enhancers.
Abstract: Tumor suppressors are mostly defined by inactivating mutations in tumors, yet little is known about their epigenetic features in normal cells. Through integrative analysis of 1,134 genome-wide epigenetic profiles, mutations from >8,200 tumor-normal pairs and our experimental data from clinical samples, we discovered broad peaks for trimethylation of histone H3 at lysine 4 (H3K4me3; wider than 4 kb) as the first epigenetic signature for tumor suppressors in normal cells. Broad H3K4me3 is associated with increased transcription elongation and enhancer activity, which together lead to exceptionally high gene expression, and is distinct from other broad epigenetic features, such as super-enhancers. Genes with broad H3K4me3 peaks conserved across normal cells may represent pan-cancer tumor suppressors, such as TP53 and PTEN, whereas genes with cell type-specific broad H3K4me3 peaks may represent cell identity genes and cell type-specific tumor suppressors. Furthermore, widespread shortening of broad H3K4me3 peaks in cancers is associated with repression of tumor suppressors. Thus, the broad H3K4me3 epigenetic signature provides mutation-independent information for the discovery and characterization of new tumor suppressors.

257 citations

Journal ArticleDOI
TL;DR: The recent updates of ICEberg 2.0 might provide better support for understanding the biological traits of ICEs, especially as their interaction with cognate mobilizable elements may further promote horizontal gene flow.
Abstract: ICEberg 2.0 (http://db-mml.sjtu.edu.cn/ICEberg/) is an updated database that provides comprehensive information about bacterial integrative and conjugative elements (ICEs). Compared with the previous version, three major improvements were made. First, with the aid of text mining and manual curation, it now recorded the details of 1032 ICEs, including 270 with experimental supports and 762 from bioinformatics prediction. Second, as increasing evidence has shown that ICEs frequently mobilize the so-called ‘hitchhikers’, such as integrative and mobilizable elements (IMEs) and cis-mobilizable elements (CIMEs), 83 known transfer interactions between 49 IMEs and 7 CIMEs with 19 ICEs taken from the literature were included and illustrated with visually intuitive directed graphs. An expanded collection of 260 chromosome-borne IMEs and 235 CIMEs was also added. At last, ICEberg 2.0 provides an online tool ICEfinder to predict ICEs or IMEs in bacterial genome sequences. It combines a similarity search for the integrase, relaxase and/or type IV secretion system and the co-localization of these corresponding homologous genes. With the recent updates, ICEberg 2.0 might provide better support for understanding the biological traits of ICEs, especially as their interaction with cognate mobilizable elements may further promote horizontal gene flow.

257 citations

Journal ArticleDOI
TL;DR: The latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance are summarized and potential therapeutic targets for cancer are reviewed.
Abstract: Ubiquitination, an important type of protein posttranslational modification (PTM), plays a crucial role in controlling substrate degradation and subsequently mediates the “quantity” and “quality” of various proteins, serving to ensure cell homeostasis and guarantee life activities. The regulation of ubiquitination is multifaceted and works not only at the transcriptional and posttranslational levels (phosphorylation, acetylation, methylation, etc.) but also at the protein level (activators or repressors). When regulatory mechanisms are aberrant, the altered biological processes may subsequently induce serious human diseases, especially various types of cancer. In tumorigenesis, the altered biological processes involve tumor metabolism, the immunological tumor microenvironment (TME), cancer stem cell (CSC) stemness and so on. With regard to tumor metabolism, the ubiquitination of some key proteins such as RagA, mTOR, PTEN, AKT, c-Myc and P53 significantly regulates the activity of the mTORC1, AMPK and PTEN-AKT signaling pathways. In addition, ubiquitination in the TLR, RLR and STING-dependent signaling pathways also modulates the TME. Moreover, the ubiquitination of core stem cell regulator triplets (Nanog, Oct4 and Sox2) and members of the Wnt and Hippo-YAP signaling pathways participates in the maintenance of CSC stemness. Based on the altered components, including the proteasome, E3 ligases, E1, E2 and deubiquitinases (DUBs), many molecular targeted drugs have been developed to combat cancer. Among them, small molecule inhibitors targeting the proteasome, such as bortezomib, carfilzomib, oprozomib and ixazomib, have achieved tangible success. In addition, MLN7243 and MLN4924 (targeting the E1 enzyme), Leucettamol A and CC0651 (targeting the E2 enzyme), nutlin and MI‐219 (targeting the E3 enzyme), and compounds G5 and F6 (targeting DUB activity) have also shown potential in preclinical cancer treatment. In this review, we summarize the latest progress in understanding the substrates for ubiquitination and their special functions in tumor metabolism regulation, TME modulation and CSC stemness maintenance. Moreover, potential therapeutic targets for cancer are reviewed, as are the therapeutic effects of targeted drugs.

257 citations

Journal ArticleDOI
TL;DR: By the incorporation of methyl groups on the ancillary ligand of phen and bpy, different DNA-binding behaviors of complexes 1 and 2 were characterized.
Abstract: By the incorporation of methyl groups on the ancillary ligand of phen and bpy, different DNA-binding behaviors of complexes 1 and 2 were characterized. Different binding rates of the isomers of 2 with CT-DNA via CD spectra were observed through dialysis experiments but not with complex 1.

257 citations


Authors

Showing all 76610 results

NameH-indexPapersCitations
Gang Chen1673372149819
Yang Yang1642704144071
Georgios B. Giannakis137132173517
Jian Li133286387131
Jianlin Shi12785954862
Zhenyu Zhang118116764887
Ju Li10962346004
Peng Wang108167254529
Qian Wang108214865557
Yan Zhang107241057758
Richard B. Kaner10655766862
Han-Qing Yu10571839735
Wei Zhang104291164923
Fabio Marchesoni10460774687
Feng Li10499560692
Network Information
Related Institutions (5)
Shanghai Jiao Tong University
184.6K papers, 3.4M citations

95% related

Zhejiang University
183.2K papers, 3.4M citations

94% related

Nanjing University
105.5K papers, 2.2M citations

93% related

Peking University
181K papers, 4.1M citations

92% related

Fudan University
117.9K papers, 2.6M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023238
20221,051
20219,715
20208,502
20197,517
20186,352