scispace - formally typeset
Search or ask a question
Institution

United States Environmental Protection Agency

GovernmentWashington D.C., District of Columbia, United States
About: United States Environmental Protection Agency is a government organization based out in Washington D.C., District of Columbia, United States. It is known for research contribution in the topics: Population & Environmental exposure. The organization has 13873 authors who have published 26902 publications receiving 1191729 citations. The organization is also known as: EPA & Environmental Protection Agency.


Papers
More filters
Book
01 Aug 1993
TL;DR: This chapter discusses temperature regulation during chemical toxicity, physical trauma and other adverse environmental conditions, and discusses the role of gender and intraspecies differences in this regulation.
Abstract: Rodents are the predominant experimental animals found in life-sciences research laboratories. The body temperature of a rodent is markedly affected by surgical, chemical or environmental manipulation. Because temperature regulation is controlled essentially by a 'holistic' regulatory system, meaning that its responses affect the activities of all other psychological and behavioural processes, it is clear that researchers working with rodents must be familiar with thermoregulatory physiology. With the help of extensive data tables and figures, this book explains the key facets of rodent thermal physiology, including neurological control and gender and intraspecies variations. There is a novel chapter on the effects of trauma, toxic chemicals and other factors. The book should therefore find use in government, academic or industrial laboratories whose researchers are working with rodents.

438 citations

Journal ArticleDOI
01 Mar 2009-Ecology
TL;DR: The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today.
Abstract: Climate change is predicted to be one of the greatest drivers of ecological change in the coming century. Increases in temperature over the last century have clearly been linked to shifts in species distributions. Given the magnitude of projected future climatic changes, we can expect even larger range shifts in the coming century. These changes will, in turn, alter ecological communities and the functioning of ecosystems. Despite the seriousness of predicted climate change, the uncertainty in climate-change projections makes it difficult for conservation managers and planners to proactively respond to climate stresses. To address one aspect of this uncertainty, we identified predictions of faunal change for which a high level of consensus was exhibited by different climate models. Specifically, we assessed the potential effects of 30 coupled atmosphere-ocean general circulation model (AOGCM) future-climate simulations on the geographic ranges of 2954 species of birds, mammals, and amphibians in the Western Hemisphere. Eighty percent of the climate projections based on a relatively low greenhouse-gas emissions scenario result in the local loss of at least 10% of the vertebrate fauna over much of North and South America. The largest changes in fauna are predicted for the tundra, Central America, and the Andes Mountains where, assuming no dispersal constraints, specific areas are likely to experience over 90% turnover, so that faunal distributions in the future will bear little resemblance to those of today.

436 citations

Journal ArticleDOI
TL;DR: In this paper, the physical and chemical characterization of PM 25 emissions from simulated agricultural fires (AFs) of surface residuals of two major grain crops, rice ( Oryza sativa ) and wheat ( Triticum aestivum L) is presented.

436 citations

Journal ArticleDOI
TL;DR: The results reveal that the VBN theory is a plausible explanation for the differences measured in the respondents' perception of ecological risk.
Abstract: A mail survey on ecological risk perception was administered in the summer of 2002 to a randomized sample of the lay public and to selected risk professionals at the U.S. Environmental Protection Agency (US EPA). The ranking of 24 ecological risk items, from global climate change to commercial fishing, reveals that the lay public is more concerned about low-probability, high-consequence risks whereas the risk professionals are more concerned about risks that pose long-term, ecosystem-level impacts. To test the explanatory power of the value-belief-norm (VBN) theory for risk perception, respondents were questioned about their personal values, spiritual beliefs, and worldviews. The most consistent predictors of the risk rankings are belief in the new ecological paradigm (NEP) and Schwartz's altruism. The NEP and Schwartz's altruism explain from 19% to 46% of the variance in the risk rankings. Religious beliefs account for less than 6% of the variance and do not show a consistent pattern in predicting risk perception although religious fundamentalists are generally less concerned about the risk items. While not exerting as strong an impact, social-structural variables do have some influence on risk perception. Ethnicities show no effect on the risk scales but the more educated and financially well-off are less concerned about the risk items. Political leanings have no direct influence on risk rankings, but indirectly affect rankings through the NEP. These results reveal that the VBN theory is a plausible explanation for the differences measured in the respondents' perception of ecological risk.

436 citations

Journal ArticleDOI
TL;DR: Recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel.
Abstract: Accumulating evidence suggests that outdoor air pollution may have a significant impact on central nervous system (CNS) health and disease. To address this issue, the National Institute of Environmental Health Sciences/National Institute of Health convened a panel of research scientists that was assigned the task of identifying research gaps and priority goals essential for advancing this growing field and addressing an emerging human health concern. Here, we review recent findings that have established the effects of inhaled air pollutants in the brain, explore the potential mechanisms driving these phenomena, and discuss the recommended research priorities/approaches that were identified by the panel.

434 citations


Authors

Showing all 13926 results

NameH-indexPapersCitations
Joel Schwartz1831149109985
Timothy A. Springer167669122421
Chien-Jen Chen12865566360
Matthew W. Gillman12652955835
J. D. Hansen12297576198
Dionysios D. Dionysiou11667548449
John P. Giesy114116262790
Douglas W. Dockery10524457461
Charles P. Gerba10269235871
David A. Savitz9957232947
Stephen Polasky9935459148
Judith C. Chow9642732632
Diane R. Gold9544330717
Scott L. Zeger9537778179
Rajender S. Varma9567237083
Network Information
Related Institutions (5)
Research Triangle Park
35.8K papers, 1.6M citations

89% related

Pacific Northwest National Laboratory
27.9K papers, 1.1M citations

87% related

Wageningen University and Research Centre
54.8K papers, 2.6M citations

86% related

Leibniz Association
35.6K papers, 1M citations

85% related

Oregon State University
64K papers, 2.6M citations

85% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202356
202279
2021780
2020787
2019852
2018929