scispace - formally typeset
Search or ask a question
Institution

University of Bremen

EducationBremen, Germany
About: University of Bremen is a education organization based out in Bremen, Germany. It is known for research contribution in the topics: Population & Context (language use). The organization has 14563 authors who have published 37279 publications receiving 970381 citations. The organization is also known as: Universität Bremen.


Papers
More filters
Journal ArticleDOI
TL;DR: Effects of temperature and temperature changes on circadian clocks in cyanobacteria, unicellular algae, and plants, as well as fungi, arthropods, and vertebrates are reviewed.
Abstract: Effects of temperature and temperature changes on circadian clocks in cyanobacteria, unicellular algae, and plants, as well as fungi, arthropods, and vertebrates are reviewed. Periodic temperature with periods around 24 h even in the low range of 1-2 degrees C (strong Zeitgeber effect) can entrain all ectothermic (poikilothermic) organisms. This is also reflected by the phase shifts-recorded by phase response curves (PRCs)-that are elicited by step- or pulsewise changes in the temperature. The amount of phase shift (weak or strong type of PRC) depends on the amplitude of the temperature change and on its duration when applied as a pulse. Form and position of the PRC to temperature pulses are similar to those of the PRC to light pulses. A combined high/low temperature and light/dark cycle leads to a stabile phase and maximal amplitude of the circadian rhythm-when applied in phase (i.e., warm/light and cold/dark). When the two Zeitgeber cycles are phase-shifted against each other the phase of the circadian rhythm is determined by either Zeitgeber or by both, depending on the relative strength (amplitude) of both Zeitgeber signals and the sensitivity of the species/individual toward them. A phase jump of the circadian rhythm has been observed in several organisms at a certain phase relationship of the two Zeitgeber cycles. Ectothermic organisms show inter- and intraspecies plus seasonal variations in the temperature limits for the expression of the clock, either of the basic molecular mechanism, and/or the dependent variables. A step-down from higher temperatures or a step-up from lower temperatures to moderate temperatures often results in initiation of oscillations from phase positions that are about 180 degrees different. This may be explained by holding the clock at different phase positions (maximum or minimum of a clock component) or by significantly different levels of clock components at the higher or lower temperatures. Different permissive temperatures result in different circadian amplitudes, that usually show a species-specific optimum. In endothermic (homeothermic) organisms periodic temperature changes of about 24 h often cause entrainment, although with considerable individual differences, only if they are of rather high amplitudes (weak Zeitgeber effects). The same applies to the phase-shifting effects of temperature pulses. Isolated bird pineals and rat suprachiasmatic nuclei tissues on the other hand, respond to medium high temperature pulses and reveal PRCs similar to that of light signals. Therefore, one may speculate that the self-selected circadian rhythm of body temperature in reptiles or the endogenously controlled body temperature in homeotherms (some of which show temperature differences of more than 2 degrees C) may, in itself, serve as an internal entraining system. The so-called heterothermic mammals (undergoing low body temperature states in a daily or seasonal pattern) may be more sensitive to temperature changes. Effects of temperature elevation on the molecular clock mechanisms have been shown in Neurospora (induction of the frequency (FRQ) protein) and in Drosophila (degradation of the period (PER) and timeless (TIM) protein) and can explain observed phase shifts of rhythms in conidiation and locomotor activity, respectively. Temperature changes probably act directly on all processes of the clock mechanism some being more sensitive than the others. Temperature changes affect membrane properties, ion homeostasis, calcium influx, and other signal cascades (cAMP, cGMP, and the protein kinases A and C) (indirect effects) and may thus influence, in particular, protein phosphorylation processes of the clock mechanism. The temperature effects resemble to some degree those induced by light or by light-transducing neurons and their transmitters. In ectothermic vertebrates temperature changes significantly affect the melatonin rhythm, which in turn exerts entraining (phase shifting) functions.

286 citations

Journal ArticleDOI
TL;DR: In this paper, a large and persistent event has been reported over the Hudson Bay area and parts of the Canadian Arctic, which can only be explained by a large local source of bromine.
Abstract: Measurements from the Global Ozone Monitoring Experiment GOME have been analysed for tropospheric BrO in the northern hemispheric spring and summer 1997. Tropospheric excess columns have been determined by subtracting measurements from a longitude range which is assumed to represent background conditions. From February until the end of May enhanced tropospheric BrO columns are observed over the Hudson Bay area and parts of the Canadian Arctic. This large and persistent event has not been reported before and can only be explained by a large local source of bromine. In addition, from March to May other smaller and shorter tropospheric BrO events are detectable along the coast lines of the Arctic Sea and over the polar ice. They correspond to the ground-based observations of enhanced tropospheric BrO reported from several stations in the high Arctic.

285 citations

Journal ArticleDOI
TL;DR: A novel, robust, and general mechanism is reported that results in highly directional light emission from high-quality modes from microdisk cavities and applies even to microlasers operating in the common multimode regime.
Abstract: A drawback of optical modes in microdisk cavities is their isotropic light emission. Here we report a novel, robust, and general mechanism that results in highly directional light emission from high-quality modes. This surprising finding is explained by a combination of wave phenomena (wave localization along unstable periodic ray trajectories) and chaotic ray dynamics in open systems (escape along unstable manifolds) and applies even to microlasers operating in the common multimode regime. We demonstrate our novel mechanism for the limacon cavity and find directional emission with narrow angular divergence for a significant range of geometries and material parameters.

285 citations

Journal ArticleDOI
TL;DR: In this article, the potential of remote sensing methods to obtain information on some snow physical variables such as grain size, liquid water content and snow depth is discussed, and the possibilities for and difficulties of building a snow photochemistry model by adapting current snow physics models are explored.
Abstract: Snow on the ground is a complex multiphase photochemical reactor that dramatically modifies the chemical composition of the overlying atmosphere. A quantitative description of the emissions of reactive gases by snow requires knowledge of snow physical properties. This overview details our current understanding of how those physical properties relevant to snow photochemistry vary during snow metamorphism. Properties discussed are density, specific surface area, thermal conductivity, permeability, gas diffusivity and optical properties. Inasmuch as possible, equations to parameterize these properties as functions of climatic variables are proposed, based on field measurements, laboratory experiments and theory. The potential of remote sensing methods to obtain information on some snow physical variables such as grain size, liquid water content and snow depth are discussed. The possibilities for and difficulties of building a snow photochemistry model by adapting current snow physics models are explored. Elaborate snow physics models already exist, and including variables of particular interest to snow photochemistry such as light fluxes and specific surface area appears possible. On the other hand, understanding the nature and location of reactive molecules in snow seems to be the greatest difficulty modelers will have to face for lack of experimental data, and progress on this aspect will require the detailed study of natural snow samples.

285 citations

Journal ArticleDOI
01 Dec 2000-JOM
TL;DR: In this article, various methods for making metallic foams are presented and discussed and some possible applications for metallic foam are presented, including foam-stabilizing mechanisms, and some known problems with various methods.
Abstract: The study of metallic foams has become attractive to researchers interested in both scientific and industrial applications. In this paper, various methods for making such foams are presented and discussed. Some techniques start from specially prepared molten metals with adjusted viscosities. Such melts can be foamed by injecting gases or by adding gas-releasing blowing agents which cause the formation of bubbles during their in-situ decomposition. Another method is to prepare supersaturated metal-gas systems under high pressure and initiate bubble formation by pressure and temperature control. Finally, metallic foams can be made by mixing metal powders with a blowing agent, compacting the mix, and then foaming the compact by melting. The various foaming processes, the foam-stabilizing mechanisms, and some known problems with the various methods are addressed in this article. In addition, some possible applications for metallic foams are presented.

285 citations


Authors

Showing all 14961 results

NameH-indexPapersCitations
Roger Y. Tsien163441138267
Klaus-Robert Müller12976479391
Ron Kikinis12668463398
Ulrich S. Schubert122222985604
Andreas Richter11076948262
Michael Böhm10875566103
Juan Bisquert10745046267
John P. Sumpter10126646184
Jos Lelieveld10057037657
Michael Schulz10075950719
Peter Singer9470237128
Charles R. Tyler9232531724
John P. Burrows9081536169
Hans-Peter Kriegel8944473932
Harald Haas8575034927
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of Hamburg
89.2K papers, 2.8M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023343
2022709
20212,106
20202,309
20192,191
20181,965