scispace - formally typeset
Search or ask a question
Institution

University of Bremen

EducationBremen, Germany
About: University of Bremen is a education organization based out in Bremen, Germany. It is known for research contribution in the topics: Population & Context (language use). The organization has 14563 authors who have published 37279 publications receiving 970381 citations. The organization is also known as: Universität Bremen.


Papers
More filters
Journal ArticleDOI
20 Oct 1994-Nature
TL;DR: A novel, membrane-permeant ester prepared by total synthesis delivers Ins(3,4,5,6)P4 intracellularly and confirms that this emerging messenger5 does inhibit Cl− flux resulting from thapsigargin- or histamine-induced [Ca2 +]i elevations.
Abstract: Osmoregulation, inhibitory neurotransmission and pH balance depend on chloride ion (Cl-) flux. In intestinal epithelial cells, apical Cl- channels control salt and fluid secretion and are, in turn, regulated by agonists acting through cyclic nucleotides and internal calcium ion concentration ([Ca2+]i). Recently, we found that muscarinic pretreatment prevents [Ca2+]i increases from eliciting Cl- secretion in T84 colonic epithelial cells. By studying concomitant inositol phosphate metabolism, we have now identified D-myo-inositol 3,4,5,6-tetrakisphosphate (Ins(3,4,5,6)P4), as the inositol phosphate most likely to mediate this uncoupling. A novel, membrane-permeant ester prepared by total synthesis delivers Ins(3,4,5,6)P4 intracellularly and confirms that this emerging messenger does inhibit Cl- flux resulting from thapsigargin- or histamine-induced [Ca2+]i elevations.

194 citations

Journal ArticleDOI
TL;DR: In this paper, high-dense bulk Cu-10Sn bronze specimens have been fabricated by selective laser melting (SLM) and their (micro)structure and mechanical properties have been investigated and compared with the corresponding material produced by casting.

194 citations

Journal ArticleDOI
TL;DR: In this article, high-resolution geochemical records from a depth transect through the Cenomanian/Turonian (C/T) Tarfaya Basin (northwest African Shelf) reveal high-amplitude fluctuations in accumulation rates of organic carbon (OC), redox-sensitive and sulphide-forming trace metals, and biomarkers indicative of photic zone euxinia.
Abstract: High-resolution geochemical records from a depth transect through the Cenomanian/Turonian (C/T) Tarfaya Basin (northwest African Shelf) reveal high-amplitude fluctuations in accumulation rates of organic carbon (OC), redox-sensitive and sulphide-forming trace metals, and biomarkers indicative of photic zone euxinia. These fluctuations are in general coeval and thus imply a strong relationship of OC burial and water column redox conditions. The pacing and regularity of the records and the absence of a prominent continental signature suggest a dynamic depositional setting linked to orbital and higher-frequency forcing. Determining the dominant frequency depends on the definition of the most pronounced oceanic anoxic event (OAE2) and its duration. We propose that eccentricity is the main forcing factor at Tarfaya and controlled fluctuations in wind-driven upwelling of nutrient-rich, oxygen-depleted intermediate waters from the adjacent Atlantic and the periodic development of photic zone and bottom water euxinia on the mid-Cretaceous northwest African shelf. Accumulation records clearly identify the basin center as the primary site of sediment deposition with highest temporal variability and an up to six-fold increase in OC burial from similar to2 g/m(2) . yr prior to the OAE2 to similar to12 g/m(2) . yr during the OAE2. Photic zone and bottom water euxinia alternated with periods of greater oxygenation of the water column in response to climate forcing. Mass balance calculations imply that similar to2% of the overall global excess OC burial associated with the OAE2 was deposited in the Tarfaya Basin, an area that represented only similar to0.05% of the total global C/T ocean floor. In fact, the lateral extent of similar black shales along the African continental margin indicates that this part of the ocean contributed significantly to the global increase in organic carbon burial during the OAE2.

194 citations

Journal ArticleDOI
TL;DR: A high-resolution geochemical record of a 120 cm black shale interval deposited during the Coniacian-Santonian Oceanic Anoxic Event 3 (ODP Leg 207, Site 1261, Demerara Rise) has been constructed to provide detailed insight into rapid changes in deep ocean and sediment paleo-redox conditions as discussed by the authors.

194 citations

Journal ArticleDOI
TL;DR: In this article, a representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF).
Abstract: . A representation of atmospheric chemistry has been included in the Integrated Forecasting System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF). The new chemistry modules complement the aerosol modules of the IFS for atmospheric composition, which is named C-IFS. C-IFS for chemistry supersedes a coupled system in which chemical transport model (CTM) Model for OZone and Related chemical Tracers 3 was two-way coupled to the IFS (IFS-MOZART). This paper contains a description of the new on-line implementation, an evaluation with observations and a comparison of the performance of C-IFS with MOZART and with a re-analysis of atmospheric composition produced by IFS-MOZART within the Monitoring Atmospheric Composition and Climate (MACC) project. The chemical mechanism of C-IFS is an extended version of the Carbon Bond 2005 (CB05) chemical mechanism as implemented in CTM Transport Model 5 (TM5). CB05 describes tropospheric chemistry with 54 species and 126 reactions. Wet deposition and lightning nitrogen monoxide (NO) emissions are modelled in C-IFS using the detailed input of the IFS physics package. A 1 year simulation by C-IFS, MOZART and the MACC re-analysis is evaluated against ozonesondes, carbon monoxide (CO) aircraft profiles, European surface observations of ozone (O3), CO, sulfur dioxide (SO2) and nitrogen dioxide (NO2) as well as satellite retrievals of CO, tropospheric NO2 and formaldehyde. Anthropogenic emissions from the MACC/CityZen (MACCity) inventory and biomass burning emissions from the Global Fire Assimilation System (GFAS) data set were used in the simulations by both C-IFS and MOZART. C-IFS (CB05) showed an improved performance with respect to MOZART for CO, upper tropospheric O3, and wintertime SO2, and was of a similar accuracy for other evaluated species. C-IFS (CB05) is about 10 times more computationally efficient than IFS-MOZART.

194 citations


Authors

Showing all 14961 results

NameH-indexPapersCitations
Roger Y. Tsien163441138267
Klaus-Robert Müller12976479391
Ron Kikinis12668463398
Ulrich S. Schubert122222985604
Andreas Richter11076948262
Michael Böhm10875566103
Juan Bisquert10745046267
John P. Sumpter10126646184
Jos Lelieveld10057037657
Michael Schulz10075950719
Peter Singer9470237128
Charles R. Tyler9232531724
John P. Burrows9081536169
Hans-Peter Kriegel8944473932
Harald Haas8575034927
Network Information
Related Institutions (5)
ETH Zurich
122.4K papers, 5.1M citations

93% related

University of Hamburg
89.2K papers, 2.8M citations

92% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

92% related

Technische Universität München
123.4K papers, 4M citations

91% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

91% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023343
2022709
20212,106
20202,309
20192,191
20181,965