scispace - formally typeset
Search or ask a question
Institution

University of Fribourg

EducationFribourg, Freiburg, Switzerland
About: University of Fribourg is a education organization based out in Fribourg, Freiburg, Switzerland. It is known for research contribution in the topics: Population & Context (language use). The organization has 6040 authors who have published 14975 publications receiving 542500 citations. The organization is also known as: UNIFR & Universität Freiburg.


Papers
More filters
Journal ArticleDOI
TL;DR: Cx40-mediated gap junctional communication contributes to a quiescent nonactivated endothelium by propagating adenosine-evoked antiinflammatory signals between endothelial cells, thus accelerating atherosclerosis.
Abstract: Background— Endothelial dysfunction is the initiating event of atherosclerosis. The expression of connexin40 (Cx40), an endothelial gap junction protein, is decreased during atherogenesis. In the present report, we sought to determine whether Cx40 contributes to the development of the disease. Methods and Results— Mice with ubiquitous deletion of Cx40 are hypertensive, a risk factor for atherosclerosis. Consequently, we generated atherosclerosis-susceptible mice with endothelial-specific deletion of Cx40 (Cx40del mice). Cx40del mice were indeed not hypertensive. The progression of atherosclerosis was increased in Cx40del mice after 5 and 10 weeks of a high-cholesterol diet, and spontaneous lesions were observed in the aortic sinuses of young mice without such a diet. These lesions showed monocyte infiltration into the intima, increased expression of vascular cell adhesion molecule-1, and decreased expression of the ecto-enzyme CD73 in the endothelium. The proinflammatory phenotype of Cx40del mice was conf...

125 citations

Journal ArticleDOI
TL;DR: In this article, the effect of Hund coupling and crystal field splitting in a simple model system was considered and it was shown that a multiorbital description of nickelate superconductors is warranted, especially in the strongly hole-doped regime.
Abstract: Superconductivity has recently been reported in Sr-doped NdNiO${}_{2}$ thin films. This work considers the effect of Hund coupling and crystal field splitting in a simple model system and shows that a multiorbital description of nickelate superconductors is warranted, especially in the strongly hole-doped regime. An analysis of this system, inspired by the spin-freezing theory of unconventional superconductivity, furthermore reveals that Nd${}_{0.8}$Sr${}_{0.2}$NiO${}_{2}$ has strongly enhanced local spin fluctuations due to the interplay of two spin-freezing crossovers.

125 citations

Journal ArticleDOI
TL;DR: It is shown that amphetamine may also excite dopamine neurons through modulation of glutamate neurotransmission, and may enhance phasic release of dopamine, which is important in the neural processing of reward.
Abstract: Amphetamine is a highly addictive psychostimulant that promotes the release of the catecholamines dopamine and norepinephrine. Amphetamine-induced release of dopamine in the midbrain inhibits the activity of dopamine neurons through activation of D2 dopamine autoreceptors. Here we show that amphetamine may also excite dopamine neurons through modulation of glutamate neurotransmission. Amphetamine potently inhibits metabotropic glutamate receptor (mGluR)-mediated IPSPs in dopamine neurons, but has no effect on ionotropic glutamate receptor-mediated EPSCs. Amphetamine desensitizes the mGluR-mediated hyperpolarization through release of dopamine, activation of postsynaptic alpha1 adrenergic receptors, and suppression of InsP3-induced calcium release from internal stores. By selectively suppressing the inhibitory component of glutamate-mediated transmission, amphetamine may promote burst firing of dopamine neurons. Through this mechanism, amphetamine may enhance phasic release of dopamine, which is important in the neural processing of reward.

124 citations

Journal ArticleDOI
TL;DR: It is shown that SiO 2 NPs, as well as soluble Si(OH) 4, can induce systemic acquired resistance in a dose-dependent manner, which involves the defence hormone salicylic acid, and specifically designed silica nanoparticles have the potential to serve as an inexpensive, highly efficient, safe and tracelessly degradable alternative for pesticides.
Abstract: In plants, pathogen attack can induce an immune response known as systemic acquired resistance that protects against a broad spectrum of pathogens. In the search for safer agrochemicals, silica nanoparticles (SiO2 NPs; food additive E551) have recently been proposed as a new tool. However, initial results are controversial, and the molecular mechanisms of SiO2 NP-induced disease resistance are unknown. Here we show that SiO2 NPs, as well as soluble Si(OH)4, can induce systemic acquired resistance in a dose-dependent manner, which involves the defence hormone salicylic acid. Nanoparticle uptake and action occurred exclusively through the stomata (leaf pores facilitating gas exchange) and involved extracellular adsorption in the air spaces in the spongy mesophyll of the leaf. In contrast to the treatment with SiO2 NPs, the induction of systemic acquired resistance by Si(OH)4 was problematic since high Si(OH)4 concentrations caused stress. We conclude that SiO2 NPs have the potential to serve as an inexpensive, highly efficient, safe and sustainable alternative for plant disease protection. New mechanistic insights into nanoparticle–plant interactions show that specifically designed silica nanoparticles have the potential to serve as an inexpensive, highly efficient, safe and tracelessly degradable alternative for pesticides.

124 citations

Journal ArticleDOI
18 Jul 2006-Langmuir
TL;DR: The present procedure offers an appealing strategy to build up solid properties for hydrophobic liquids while preserving the low viscosity and ease of manufacturing.
Abstract: We have developed a new method allowing us to transform low-viscous apolar fluids into elastic solids with a shear elastic modulus of the order of 103−105 Pa. The elasticity of the elastic solid is provided by a percolating 3D network of proteins, which are originally adsorbed at the interface of an oil-in-water emulsion template. By cross-linking the protein films at the interface and upon removal of water, the template is driven into a structure resembling a dry foam where the protein interfaces constitute the walls of the foam and the air is replaced by oil confined within polyhedral, closely packed droplets. Depending on the density of the protein network, the final material consists of chemically unmodified oil in a proportion of 95 to 99.9%. The physical properties of the elastic solid obtained can be tuned by changing either the average diameter size of the emulsion template or the cross-linking process of the protein film. However, the original low-viscosity emulsion can be restored by simply rehy...

124 citations


Authors

Showing all 6204 results

NameH-indexPapersCitations
Jens Nielsen1491752104005
Sw. Banerjee1461906124364
Hans Peter Beck143113491858
Patrice Nordmann12779067031
Abraham Z. Snyder12532991997
Csaba Szabó12395861791
Robert Edwards12177574552
Laurent Poirel11762153680
Thomas Münzel116105557716
David G. Amaral11230249094
F. Blanc107151458418
Markus Stoffel10262050796
Vincenzo Balzani10147645722
Enrico Bertini9986538167
Sandeep Kumar94156338652
Network Information
Related Institutions (5)
University of Zurich
124K papers, 5.3M citations

94% related

ETH Zurich
122.4K papers, 5.1M citations

94% related

Centre national de la recherche scientifique
382.4K papers, 13.6M citations

94% related

École Polytechnique Fédérale de Lausanne
98.2K papers, 4.3M citations

93% related

University of Oxford
258.1K papers, 12.9M citations

93% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202367
2022348
20211,110
20201,112
2019966
2018924