scispace - formally typeset
Search or ask a question
Institution

University of Georgia

EducationAthens, Georgia, United States
About: University of Georgia is a education organization based out in Athens, Georgia, United States. It is known for research contribution in the topics: Population & Gene. The organization has 41934 authors who have published 93622 publications receiving 3713212 citations. The organization is also known as: UGA & Franklin College.


Papers
More filters
Journal ArticleDOI
TL;DR: The CHES trend file as discussed by the authors contains measures of national party positioning on European integration, ideology and several European Union (EU) and non-EU policies for 1999−2010, and explores basic trends on party positioning since 1999.
Abstract: This article reports on the 2010 Chapel Hill expert surveys (CHES) and introduces the CHES trend file, which contains measures of national party positioning on European integration, ideology and several European Union (EU) and non-EU policies for 1999−2010. We examine the reliability of expert judgments and cross-validate the 2010 CHES data with data from the Comparative Manifesto Project and the 2009 European Elections Studies survey, and explore basic trends on party positioning since 1999. The dataset is available at the CHES website.

762 citations

Journal ArticleDOI
TL;DR: The history of the areas of multiple criteria decision making (MCDM) and multiattribute utility theory (MAUT) are extended and topics the authors believe to be important for the future of these fields are discussed.
Abstract: This paper is an update of a paper that five of us published in 1992. The areas of multiple criteria decision making (MCDM) and multiattribute utility theory (MAUT) continue to be active areas of management science research and application. This paper extends the history of these areas and discusses topics we believe to be important for the future of these fields.

760 citations

Journal ArticleDOI
TL;DR: Considering the evidence-based literature review, the National Osteoporosis Foundation recommends lifestyle choices that promote maximal bone health from childhood through young to late adolescence and outline a research agenda to address current gaps in knowledge.
Abstract: Lifestyle choices influence 20–40 % of adult peak bone mass. Therefore, optimization of lifestyle factors known to influence peak bone mass and strength is an important strategy aimed at reducing risk of osteoporosis or low bone mass later in life. The National Osteoporosis Foundation has issued this scientific statement to provide evidence-based guidance and a national implementation strategy for the purpose of helping individuals achieve maximal peak bone mass early in life. In this scientific statement, we (1) report the results of an evidence-based review of the literature since 2000 on factors that influence achieving the full genetic potential for skeletal mass; (2) recommend lifestyle choices that promote maximal bone health throughout the lifespan; (3) outline a research agenda to address current gaps; and (4) identify implementation strategies. We conducted a systematic review of the role of individual nutrients, food patterns, special issues, contraceptives, and physical activity on bone mass and strength development in youth. An evidence grading system was applied to describe the strength of available evidence on these individual modifiable lifestyle factors that may (or may not) influence the development of peak bone mass (Table 1). A summary of the grades for each of these factors is given below. We describe the underpinning biology of these relationships as well as other factors for which a systematic review approach was not possible. Articles published since 2000, all of which followed the report by Heaney et al. [1] published in that year, were considered for this scientific statement. This current review is a systematic update of the previous review conducted by the National Osteoporosis Foundation [1]. Considering the evidence-based literature review, we recommend lifestyle choices that promote maximal bone health from childhood through young to late adolescence and outline a research agenda to address current gaps in knowledge. The best evidence (grade A) is available for positive effects of calcium intake and physical activity, especially during the late childhood and peripubertal years—a critical period for bone accretion. Good evidence is also available for a role of vitamin D and dairy consumption and a detriment of DMPA injections. However, more rigorous trial data on many other lifestyle choices are needed and this need is outlined in our research agenda. Implementation strategies for lifestyle modifications to promote development of peak bone mass and strength within one’s genetic potential require a multisectored (i.e., family, schools, healthcare systems) approach.

759 citations

Journal ArticleDOI
TL;DR: A high-quality reference genome sequence for foxtail millet (Setaria italica) is generated and regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion are identified.
Abstract: We generated a high-quality reference genome sequence for foxtail millet (Setaria italica). The ~400-Mb assembly covers ~80% of the genome and >95% of the gene space. The assembly was anchored to a 992-locus genetic map and was annotated by comparison with >1.3 million expressed sequence tag reads. We produced more than 580 million RNA-Seq reads to facilitate expression analyses. We also sequenced Setaria viridis, the ancestral wild relative of S. italica, and identified regions of differential single-nucleotide polymorphism density, distribution of transposable elements, small RNA content, chromosomal rearrangement and segregation distortion. The genus Setaria includes natural and cultivated species that demonstrate a wide capacity for adaptation. The genetic basis of this adaptation was investigated by comparing five sequenced grass genomes. We also used the diploid Setaria genome to evaluate the ongoing genome assembly of a related polyploid, switchgrass (Panicum virgatum).

758 citations

PatentDOI
TL;DR: Preliminary growth studies indicated both fresh water and marine algae showed good growth in wastewaters, and further studies on anaerobic digestion and thermochemical liquefaction are required to make this consortium approach economically viable for producing algae biofuels.

756 citations


Authors

Showing all 42268 results

NameH-indexPapersCitations
Rob Knight2011061253207
Feng Zhang1721278181865
Zhenan Bao169865106571
Carl W. Cotman165809105323
Yoshio Bando147123480883
Mark Raymond Adams1471187135038
Han Zhang13097058863
Dmitri Golberg129102461788
Godfrey D. Pearlson12874058845
Douglas E. Soltis12761267161
Richard A. Dixon12660371424
Ajit Varki12454258772
Keith A. Johnson12079851034
Gustavo E. Scuseria12065895195
Julian I. Schroeder12031550323
Network Information
Related Institutions (5)
University of California, Davis
180K papers, 8M citations

95% related

University of Florida
200K papers, 7.1M citations

94% related

University of Wisconsin-Madison
237.5K papers, 11.8M citations

94% related

Cornell University
235.5K papers, 12.2M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023125
2022542
20214,670
20204,504
20194,098
20183,994