scispace - formally typeset
Search or ask a question
Institution

University of New Hampshire

EducationDurham, New Hampshire, United States
About: University of New Hampshire is a education organization based out in Durham, New Hampshire, United States. It is known for research contribution in the topics: Population & Solar wind. The organization has 9379 authors who have published 24025 publications receiving 1020112 citations. The organization is also known as: UNH.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, seven years of carbon dioxide flux measurements indicate that a ~ 90-year-old spruce dominated forest in Maine, USA, has been sequestering 174±46 gCm-2 yr-1 (mean±1 standard deviation, nocturnal friction velocity (u*) threshold >0.25ms-1).
Abstract: Seven years of carbon dioxide flux measurements indicate that a ~ 90-year-old spruce dominated forest in Maine, USA, has been sequestering 174±46 gCm-2 yr-1 (mean±1 standard deviation, nocturnal friction velocity (u*) threshold >0.25ms-1). An analysis of monthly flux anomalies showed that above-average spring and fall temperatures were significantly correlated with greater monthly C uptake while above-average summer temperatures were correlated with decreased net C uptake. Summer months with significantly drier or wetter soils than normal were also characterized by lower rates of C uptake. Years with above-average C storage were thus typically characterized by warmer than average spring and fall temperatures and adequate summer soil moisture.

363 citations

Journal ArticleDOI
TL;DR: It is demonstrated that increased nutrient loading results in less light for eelgrass and that eclgrass growth linearly decreases with reduced light, and suggests that the negative effect of algae on eel Grass occurs primarily through the reduction of light.
Abstract: Outdoor mesocosm experiments were used to examine the response of eelgrass communities to excess nutrient loading and reduced light that simulated coastal eutrophication. A series of replicated manipulations conducted between 1988 and 1990 demonstrated the effects of reduced available light and increased loading of nitrogen plus phosphorus on habitats dominated by eelgrass Zostera marina L. Shade and nutrients each significantly affected eelgrass growth, morphology, density, and biomass. WC found no significant interactions between the effects of shade and the effects of nutrients on any plant characteristics except leaf length. The growth rate of individual eelgrass shoots was linearly related to light, increasing throughout the range of available light. Biomass and daily biomass increase, or areal growth, were also linearly related to light, but specific growth showed no response to light. Shoot density increased with the log of light. Excess nutrient loading was shown to significantly reduce eelgrass growth and bed structure through stimulation of various forms of algae that effectively competed with eelgrass for light. The absence of significant interactions between the effects of shade and nutrients on eelgrass density, growth, and biomass suggests that the negative effect of algae on eelgrass occurs primarily through the reduction of light (i.e. shading). The outcome of nutrient enrichment was a shift in plant dominance from eelgrass to three algal forms: phytoplankton, epiphytic algae, and macroalgae. We quantified the effects of eutrophication and demonstrated that increased nutrient loading results in less light for eelgrass and that eclgrass growth linearly decreases with reduced light.

362 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used time-lapse imagery, seismic and audio recordings, iceberg and glacier velocities, ocean wave measurements, and simple theoretical considerations to investigate the interactions between Jakobshavn Isbrae and its proglacial ice melange.
Abstract: [1] We used time-lapse imagery, seismic and audio recordings, iceberg and glacier velocities, ocean wave measurements, and simple theoretical considerations to investigate the interactions between Jakobshavn Isbrae and its proglacial ice melange. The melange behaves as a weak, granular ice shelf whose rheology varies seasonally. Sea ice growth in winter stiffens the melange matrix by binding iceberg clasts together, ultimately preventing the calving of full-glacier-thickness icebergs (the dominant style of calving) and enabling a several kilometer terminus advance. Each summer the melange weakens and the terminus retreats. The melange remains strong enough, however, to be largely unaffected by ocean currents (except during calving events) and to influence the timing and sequence of calving events. Furthermore, motion of the melange is highly episodic: between calving events, including the entire winter, it is pushed down fjord by the advancing terminus (at ∼40 m d−1), whereas during calving events it can move in excess of 50 × 103 m d−1 for more than 10 min. By influencing the timing of calving events, the melange contributes to the glacier's several kilometer seasonal advance and retreat; the associated geometric changes of the terminus area affect glacier flow. Furthermore, a force balance analysis shows that large-scale calving is only possible from a terminus that is near floatation, especially in the presence of a resistive ice melange. The net annual retreat of the glacier is therefore limited by its proximity to floatation, potentially providing a physical mechanism for a previously described near-floatation criterion for calving.

362 citations

Journal ArticleDOI
TL;DR: In this article, the authors estimated changes in total soil and biomass N, Ca, K, Mg, and P over 120 years from published data for a spruce-fir site in Maine, two northern hardwood sites in New Hampshire, central hard wood sites in Connecticut and Tennessee, and a loblolly pine site in Tennessee.
Abstract: Both harvest removal and leaching losses can deplete nutrient capital in forests, but their combined long-term effects have not been assessed previously. We estimated changes in total soil and biomass N, Ca, K, Mg, and P over 120 years from published data for a spruce-fir site in Maine, two northern hardwood sites in New Hampshire, central hardwood sites in Connecticut and Tennessee, and a loblolly pine site in Tennessee. For N, atmospheric inputs counterbalance the outputs, and there is little long-term change on most sites. For K, Mg, and P, the total pool may decrease by 2%–10% in 120 years depending on site and harvest intensity. For Ca, net leaching loss is 4–16 kg/ha/yr in mature forests, and whole-tree harvest removes 200–1100 kg/ha. Such leaching loss and harvest removal could reduce total soil and biomass Ca by 20%–60% in only 120 years. We estimated unmeasured Ca inputs from rock breakdown, root-zone deepening, and dry deposition; these should not be expected to make up the Ca deficit. Acid precipitation may be the cause of current high leaching of Ca. Although Ca deficiency does not generally occur now in acid forest soils, it seems likely if anthropogenic leaching and intensive harvest removal continue.

362 citations

Journal ArticleDOI
TL;DR: Twelve years of chronic soil warming at 5 °C above the ambient temperature resulted in a significant reduction in microbial biomass and the utilization of a suite of C substrates which included amino acids, carbohydrates, and carboxylic acids.
Abstract: We examined the effect of chronic soil warming on microbial biomass, functional capacity, and community structure in soil samples collected from the Soil Warming Study located at the Harvard Forest Long-term Ecological Research (LTER) site. Twelve years of chronic soil warming at 5 °C above the ambient temperature resulted in a significant reduction in microbial biomass and the utilization of a suite of C substrates which included amino acids, carbohydrates, and carboxylic acids. Heating significantly reduced the abundance of fungal biomarkers. There was also a shift in the mineral soil microbial community towards gram positive bacteria and actinomycetes.

361 citations


Authors

Showing all 9489 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Peter B. Reich159790110377
Jerry M. Melillo13438368894
Katja Klein129149987817
David Finkelhor11738258094
Howard A. Stone114103364855
James O. Hill11353269636
Tadayuki Takahashi11293257501
Howard Eichenbaum10827944172
John D. Aber10720448500
Andrew W. Strong9956342475
Charles T. Driscoll9755437355
Andrew D. Richardson9428232850
Colin A. Chapman9249128217
Nicholas W. Lukacs9136734057
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

Michigan State University
137K papers, 5.6M citations

92% related

Texas A&M University
164.3K papers, 5.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022183
20211,148
20201,128
20191,140
20181,089