scispace - formally typeset
Search or ask a question

Showing papers by "University of New Hampshire published in 2010"


Journal ArticleDOI
30 Sep 2010-Nature
TL;DR: The first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts is presented.
Abstract: Protecting the world’s freshwater resources requires diagnosing threats over a broad range of scales, from global to local. Here we present the first worldwide synthesis to jointly consider human and biodiversity perspectives on water security using a spatial framework that quantifies multiple stressors and accounts for downstream impacts. We find that nearly 80% of the world’s population is exposed to high levels of threat to water security. Massive investment in water technology enables rich nations to offset high stressor levels without remedying their underlying causes, whereas less wealthy nations remain vulnerable. A similar lack of precautionary investment jeopardizes biodiversity, with habitats associated with 65% of continental discharge classified as moderately to highly threatened. The cumulative threat framework offers a tool for prioritizing policy and management responses to this crisis, and underscores the necessity of limiting threats at their source instead of through costly remediation of symptoms in order to assure global water security for both humans and freshwater biodiversity.

5,401 citations


Journal ArticleDOI
10 Dec 2010-Science
TL;DR: Though the threat of extinction is increasing, overall declines would have been worse in the absence of conservation, and current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups.
Abstract: Using data for 25,780 species categorized on the International Union for Conservation of Nature Red List, we present an assessment of the status of the world's vertebrates. One-fifth of species are classified as Threatened, and we show that this figure is increasing: On average, 52 species of mammals, birds, and amphibians move one category closer to extinction each year. However, this overall pattern conceals the impact of conservation successes, and we show that the rate of deterioration would have been at least one-fifth again as much in the absence of these. Nonetheless, current conservation efforts remain insufficient to offset the main drivers of biodiversity loss in these groups: agricultural expansion, logging, overexploitation, and invasive alien species.

1,333 citations


Journal ArticleDOI
08 Apr 2010-PLOS ONE
TL;DR: Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones are the most threatened because they are often the first cleared for development of aquaculture and agriculture.
Abstract: Mangrove species are uniquely adapted to tropical and subtropical coasts, and although relatively low in number of species, mangrove forests provide at least US $1.6 billion each year in ecosystem services and support coastal livelihoods worldwide. Globally, mangrove areas are declining rapidly as they are cleared for coastal development and aquaculture and logged for timber and fuel production. Little is known about the effects of mangrove area loss on individual mangrove species and local or regional populations. To address this gap, species-specific information on global distribution, population status, life history traits, and major threats were compiled for each of the 70 known species of mangroves. Each species' probability of extinction was assessed under the Categories and Criteria of the IUCN Red List of Threatened Species. Eleven of the 70 mangrove species (16%) are at elevated threat of extinction. Particular areas of geographical concern include the Atlantic and Pacific coasts of Central America, where as many as 40% of mangroves species present are threatened with extinction. Across the globe, mangrove species found primarily in the high intertidal and upstream estuarine zones, which often have specific freshwater requirements and patchy distributions, are the most threatened because they are often the first cleared for development of aquaculture and agriculture. The loss of mangrove species will have devastating economic and environmental consequences for coastal communities, especially in those areas with low mangrove diversity and high mangrove area or species loss. Several species at high risk of extinction may disappear well before the next decade if existing protective measures are not enforced.

1,108 citations


Journal ArticleDOI
TL;DR: In this article, the authors summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America and show that carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most.
Abstract: Disturbances are important for renewal of North American forests. Here we summarize more than 180 site years of eddy covariance measurements of carbon dioxide flux made at forest chronosequences in North America. The disturbances included stand-replacing fire (Alaska, Arizona, Manitoba, and Saskatchewan) and harvest (British Columbia, Florida, New Brunswick, Oregon, Quebec, Saskatchewan, and Wisconsin) events, insect infestations (gypsy moth, forest tent caterpillar, and mountain pine beetle), Hurricane Wilma, and silvicultural thinning (Arizona, California, and New Brunswick). Net ecosystem production (NEP) showed a carbon loss from all ecosystems following a stand-replacing disturbance, becoming a carbon sink by 20 years for all ecosystems and by 10 years for most. Maximum carbon losses following disturbance (g C m−2y−1) ranged from 1270 in Florida to 200 in boreal ecosystems. Similarly, for forests less than 100 years old, maximum uptake (g C m−2y−1) was 1180 in Florida mangroves and 210 in boreal ecosystems. More temperate forests had intermediate fluxes. Boreal ecosystems were relatively time invariant after 20 years, whereas western ecosystems tended to increase in carbon gain over time. This was driven mostly by gross photosynthetic production (GPP) because total ecosystem respiration (ER) and heterotrophic respiration were relatively invariant with age. GPP/ER was as low as 0.2 immediately following stand-replacing disturbance reaching a constant value of 1.2 after 20 years. NEP following insect defoliations and silvicultural thinning showed lesser changes than stand-replacing events, with decreases in the year of disturbance followed by rapid recovery. NEP decreased in a mangrove ecosystem following Hurricane Wilma because of a decrease in GPP and an increase in ER.

794 citations


Journal ArticleDOI
TL;DR: Poly-victimization is more highly related to trauma symptoms than experiencing repeated victimizations of a single type and explains a large part of the associations between individual forms of victimization and symptom levels.

659 citations


Journal ArticleDOI
TL;DR: In this paper, an integrated modeling approach was used to connect socioeconomic factors and nutrient management to river export of nitrogen, phosphorus, silica and carbon based on an updated Global NEWS model.
Abstract: [1] An integrated modeling approach was used to connect socioeconomic factors and nutrient management to river export of nitrogen, phosphorus, silica and carbon based on an updated Global NEWS model. Past trends (1970–2000) and four future scenarios were analyzed. Differences among the scenarios for nutrient management in agriculture were a key factor affecting the magnitude and direction of change of future DIN river export. In contrast, connectivity and level of sewage treatment and P detergent use were more important for differences in DIP river export. Global particulate nutrient export was calculated to decrease for all scenarios, in part due to increases in dams for hydropower. Small changes in dissolved silica and dissolved organics were calculated for all scenarios at the global scale. Population changes were an important underlying factor for river export of all nutrients in all scenarios. Substantial regional differences were calculated for all nutrient elements and forms. South Asia alone accounted for over half of the global increase in DIN and DIP river export between 1970 and 2000 and in the subsequent 30 years under the Global Orchestration scenario (globally connected with reactive approach to environmental problems); DIN river export decreased in the Adapting Mosaic (globally connected with proactive approach) scenario by 2030, although DIP continued to increase. Risks for coastal eutrophication will likely continue to increase in many world regions for the foreseeable future due to both increases in magnitude and changes in nutrient ratios in river export.

605 citations


Journal ArticleDOI
TL;DR: In this paper, the authors explored the feasibility of tablet computers in early education by investigating preschool children's ease in acclimating to tablet technology and its effectiveness in engaging them to draw.
Abstract: This study explored the viability of tablet computers in early education by investigating preschool children’s ease in acclimating to tablet technology and its effectiveness in engaging them to draw. A total of 41 three- to six-yearold children were videotaped while they used the tablets. The study found significant differences in level of tablet use between sessions, and engagement increased with age. Teachers reported high child interest and drawings as typical to above expectation. Children quickly developed ease with the stylus for drawing. Although technical issues in learning this new technology were encountered, children were interested and persisted without frustration. What seems to matter for children’s learning is the ways teachers choose to implement this technology. (Keywords: technology and young children, tablet computers, computers and early education, pentop computing)

426 citations


Journal ArticleDOI
TL;DR: These data support the poly-victimization model, indicating that many youth experience multiple forms of victimization and indicate that the various forms of family violence are especially closely linked.

420 citations


Journal ArticleDOI
TL;DR: In this article, the authors of different sustainability journals, including authors of articles in past issues of the International Journal of Life Cycle Assessment have acknowledged the rising interest and importance of sustainability in the literature.
Abstract: Purpose Authors of different sustainability journals, including authors of articles in past issues of the International Journal of Life Cycle Assessment have acknowledged the rising interest and th ...

418 citations


Journal ArticleDOI
TL;DR: In this paper, a global 3D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model) was conducted and compared to the previous version of the model with OH and ozone as the sole oxidants, and the results showed that the Hg+ Br model is equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes.
Abstract: . Global models of atmospheric mercury generally assume that gas-phase OH and ozone are the main oxidants converting Hg0 to HgII and thus driving mercury deposition to ecosystems. However, thermodynamic considerations argue against the importance of these reactions. We demonstrate here the viability of atomic bromine (Br) as an alternative Hg0 oxidant. We conduct a global 3-D simulation with the GEOS-Chem model assuming gas-phase Br to be the sole Hg0 oxidant (Hg + Br model) and compare to the previous version of the model with OH and ozone as the sole oxidants (Hg + OH/O3 model). We specify global 3-D Br concentration fields based on our best understanding of tropospheric and stratospheric Br chemistry. In both the Hg + Br and Hg + OH/O3 models, we add an aqueous photochemical reduction of HgII in cloud to impose a tropospheric lifetime for mercury of 6.5 months against deposition, as needed to reconcile observed total gaseous mercury (TGM) concentrations with current estimates of anthropogenic emissions. This added reduction would not be necessary in the Hg + Br model if we adjusted the Br oxidation kinetics downward within their range of uncertainty. We find that the Hg + Br and Hg + OH/O3 models are equally capable of reproducing the spatial distribution of TGM and its seasonal cycle at northern mid-latitudes. The Hg + Br model shows a steeper decline of TGM concentrations from the tropics to southern mid-latitudes. Only the Hg + Br model can reproduce the springtime depletion and summer rebound of TGM observed at polar sites; the snowpack component of GEOS-Chem suggests that 40% of HgII deposited to snow in the Arctic is transferred to the ocean and land reservoirs, amounting to a net deposition flux to the Arctic of 60 Mg a−1. Summertime events of depleted Hg0 at Antarctic sites due to subsidence are much better simulated by the Hg + Br model. Model comparisons to observed wet deposition fluxes of mercury in the US and Europe show general consistency. However the Hg + Br model does not capture the summer maximum over the southeast US because of low subtropical Br concentrations while the Hg + OH/O3 model does. Vertical profiles measured from aircraft show a decline of Hg0 above the tropopause that can be captured by both the Hg + Br and Hg + OH/O3 models, except in Arctic spring where the observed decline is much steeper than simulated by either model; we speculate that oxidation by Cl species might be responsible. The Hg + Br and Hg + OH/O3 models yield similar global budgets for the cycling of mercury between the atmosphere and surface reservoirs, but the Hg + Br model results in a much larger fraction of mercury deposited to the Southern Hemisphere oceans.

414 citations


Journal ArticleDOI
TL;DR: In this paper, a new notion of the core of a braided fusion category is introduced, which allows to separate the part of a fusion category that does not come from finite groups.
Abstract: We introduce a new notion of the core of a braided fusion category. It allows to separate the part of a braided fusion category that does not come from finite groups. We also give a comprehensive and self-contained exposition of the known results on braided fusion categories without assuming them pre-modular or non-degenerate. The guiding heuristic principle of our work is an analogy between braided fusion categories and Casimir Lie algebras.

Journal ArticleDOI
TL;DR: The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June-July 2008) as discussed by the authors.
Abstract: . The NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission was conducted in two 3-week deployments based in Alaska (April 2008) and western Canada (June–July 2008). Its goal was to better understand the factors driving current changes in Arctic atmospheric composition and climate, including (1) influx of mid-latitude pollution, (2) boreal forest fires, (3) aerosol radiative forcing, and (4) chemical processes. The June–July deployment was preceded by one week of flights over California (ARCTAS-CARB) focused on (1) improving state emission inventories for greenhouse gases and aerosols, (2) providing observations to test and improve models of ozone and aerosol pollution. ARCTAS involved three aircraft: a DC-8 with a detailed chemical payload, a P-3 with an extensive aerosol and radiometric payload, and a B-200 with aerosol remote sensing instrumentation. The aircraft data augmented satellite observations of Arctic atmospheric composition, in particular from the NASA A-Train. The spring phase (ARCTAS-A) revealed pervasive Asian pollution throughout the Arctic as well as significant European pollution below 2 km. Unusually large Siberian fires in April 2008 caused high concentrations of carbonaceous aerosols and also affected ozone. Satellite observations of BrO column hotspots were found not to be related to Arctic boundary layer events but instead to tropopause depressions, suggesting the presence of elevated inorganic bromine (5–10 pptv) in the lower stratosphere. Fresh fire plumes from Canada and California sampled during the summer phase (ARCTAS-B) indicated low NOx emission factors from the fires, rapid conversion of NOx to PAN, no significant secondary aerosol production, and no significant ozone enhancements except when mixed with urban pollution.

Journal ArticleDOI
TL;DR: In this paper, the authors used time-lapse imagery, seismic and audio recordings, iceberg and glacier velocities, ocean wave measurements, and simple theoretical considerations to investigate the interactions between Jakobshavn Isbrae and its proglacial ice melange.
Abstract: [1] We used time-lapse imagery, seismic and audio recordings, iceberg and glacier velocities, ocean wave measurements, and simple theoretical considerations to investigate the interactions between Jakobshavn Isbrae and its proglacial ice melange. The melange behaves as a weak, granular ice shelf whose rheology varies seasonally. Sea ice growth in winter stiffens the melange matrix by binding iceberg clasts together, ultimately preventing the calving of full-glacier-thickness icebergs (the dominant style of calving) and enabling a several kilometer terminus advance. Each summer the melange weakens and the terminus retreats. The melange remains strong enough, however, to be largely unaffected by ocean currents (except during calving events) and to influence the timing and sequence of calving events. Furthermore, motion of the melange is highly episodic: between calving events, including the entire winter, it is pushed down fjord by the advancing terminus (at ∼40 m d−1), whereas during calving events it can move in excess of 50 × 103 m d−1 for more than 10 min. By influencing the timing of calving events, the melange contributes to the glacier's several kilometer seasonal advance and retreat; the associated geometric changes of the terminus area affect glacier flow. Furthermore, a force balance analysis shows that large-scale calving is only possible from a terminus that is near floatation, especially in the presence of a resistive ice melange. The net annual retreat of the glacier is therefore limited by its proximity to floatation, potentially providing a physical mechanism for a previously described near-floatation criterion for calving.

Proceedings ArticleDOI
22 Mar 2010
TL;DR: The physiological and performance measures show high correspondence suggesting that remote eye tracking might provide reliable driver cognitive load estimation, especially in simulators, and introduced a new pupillometric cognitive load measure that shows promise in tracking cognitive load changes on time scales of several seconds.
Abstract: We report on the results of a study in which pairs of subjects were involved in spoken dialogues and one of the subjects also operated a simulated vehicle. We estimated the driver's cognitive load based on pupil size measurements from a remote eye tracker. We compared the cognitive load estimates based on the physiological pupillometric data and driving performance data. The physiological and performance measures show high correspondence suggesting that remote eye tracking might provide reliable driver cognitive load estimation, especially in simulators. We also introduced a new pupillometric cognitive load measure that shows promise in tracking cognitive load changes on time scales of several seconds.

Journal ArticleDOI
TL;DR: Denitrification-decomposition (DNDC) as mentioned in this paper is a process-based model for predicting the soil fluxes of all three terrestrial greenhouse gases: N2O, carbon dioxide (CO2), and methane (CH4).

Journal ArticleDOI
TL;DR: In this article, the authors derived an analytic expression for the rates at which different ion species are heated, which they test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs.
Abstract: We consider ion heating by turbulent Alfv?n waves (AWs) and kinetic Alfv?n waves (KAWs) with wavelengths (measured perpendicular to the magnetic field) that are comparable to the ion gyroradius and frequencies ? smaller than the ion cyclotron frequency ?. We focus on plasmas in which ? 1, where ? is the ratio of plasma pressure to magnetic pressure. As in previous studies, we find that when the turbulence amplitude exceeds a certain threshold, an ion's orbit becomes chaotic. The ion then interacts stochastically with the time-varying electrostatic potential, and the ion's energy undergoes a random walk. Using phenomenological arguments, we derive an analytic expression for the rates at which different ion species are heated, which we test by simulating test particles interacting with a spectrum of randomly phased AWs and KAWs. We find that the stochastic heating rate depends sensitively on the quantity ? = ?v ?/v ?, where v ? (v ?) is the component of the ion velocity perpendicular (parallel) to the background magnetic field B 0, and ?v ? (?B ?) is the rms amplitude of the velocity (magnetic-field) fluctuations at the gyroradius scale. In the case of thermal protons, when ? ?crit, where ?crit is a constant, a proton's magnetic moment is nearly conserved and stochastic heating is extremely weak. However, when ?>?crit, the proton heating rate exceeds half the cascade power that would be present in strong balanced KAW turbulence with the same value of ?v ?, and magnetic-moment conservation is violated even when ? ?. For the random-phase waves in our test-particle simulations, ?crit = 0.19. For protons in low-? plasmas, ? ??1/2?B ?/B 0, and ? can exceed ?crit even when ?B ?/B 0 ?crit. The heating is anisotropic, increasing v 2 ? much more than v 2 ? when ? 1. (In contrast, at ? 1 Landau damping and transit-time damping of KAWs lead to strong parallel heating of protons.) At comparable temperatures, alpha particles and minor ions have larger values of ? than protons and are heated more efficiently as a result. We discuss the implications of our results for ion heating in coronal holes and the solar wind.

Journal ArticleDOI
TL;DR: In this article, the authors examined the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs).
Abstract: Hydrologic cycle intensification is an expected manifestation of a warming climate. Although positive trends in several global average quantities have been reported, no previous studies have documented broad intensification across elements of the Arctic freshwater cycle (FWC). In this study, the authors examine the character and quantitative significance of changes in annual precipitation, evapotranspiration, and river discharge across the terrestrial pan-Arctic over the past several decades from observations and a suite of coupled general circulation models (GCMs). Trends in freshwater flux and storage derived from observations across the Arctic Ocean and surrounding seas are also described. With few exceptions, precipitation, evapotranspiration, and river discharge fluxes from observations and the GCMs exhibit positive trends. Significant positive trends above the 90% confidence level, however, are not present for all of the observations. Greater confidence in the GCM trends arises through lowe...

Journal ArticleDOI
TL;DR: Second-generation sequencing is used to unmask putatively diverse marine metazoan biodiversity in a Scottish temperate benthic ecosystem and refute currently accepted ecological and taxonomic paradigms of meiofaunal identity, rank abundance and concomitant understanding of trophic dynamics.
Abstract: Biodiversity is of crucial importance for ecosystem functioning, sustainability and resilience, but the magnitude and organization of marine diversity at a range of spatial and taxonomic scales are undefined. In this paper, we use second-generation sequencing to unmask putatively diverse marine metazoan biodiversity in a Scottish temperate benthic ecosystem. We show that remarkable differences in diversity occurred at microgeographical scales and refute currently accepted ecological and taxonomic paradigms of meiofaunal identity, rank abundance and concomitant understanding of trophic dynamics. Richness estimates from the current benchmarked Operational Clustering of Taxonomic Units from Parallel UltraSequencing analyses are broadly aligned with those derived from morphological assessments. However, the slope of taxon rarefaction curves for many phyla remains incomplete, suggesting that the true alpha diversity is likely to exceed current perceptions. The approaches provide a rapid, objective and cost-effective taxonomic framework for exploring links between ecosystem structure and function of all hitherto intractable, but ecologically important, communities.

Journal ArticleDOI
TL;DR: An overview of meiofaunal metagenetic analyses, ranging from sample preservation and DNA extraction to PCR, sequencing and the bioinformatic interrogation of multiple, independent samples using 454 Roche sequencing platforms, is provided.
Abstract: Biodiversity assessment is the key to understanding the relationship between biodiversity and ecosystem functioning, but there is a well-acknowledged biodiversity identification gap related to eukaryotic meiofaunal organisms. Meiofaunal identification is confounded by the small size of taxa, morphological convergence and intraspecific variation. However, the most important restricting factor in meiofaunal ecological research is the mismatch between diversity and the number of taxonomists that are able to simultaneously identify and catalogue meiofaunal diversity. Accordingly, a molecular operational taxonomic unit (MOTU)-based approach has been advocated for en mass meiofaunal biodiversity assessment, but it has been restricted by the lack of throughput afforded by chain termination sequencing. Contemporary pyrosequencing offers a solution to this problem in the form of environmental metagenetic analyses, but this represents a novel field of biodiversity assessment. Here, we provide an overview of meiofaunal metagenetic analyses, ranging from sample preservation and DNA extraction to PCR, sequencing and the bioinformatic interrogation of multiple, independent samples using 454 Roche sequencing platforms. We report two examples of environmental metagenetic nuclear small subunit 18S (nSSU) analyses of marine and tropical rainforest habitats and provide critical appraisals of the level of putative recombinant DNA molecules (chimeras) in metagenetic data sets. Following stringent quality control measures, environmental metagenetic analyses achieve MOTU formation across the eukaryote domain of life at a fraction of the time and cost of traditional approaches. The effectiveness of Roche 454 sequencing brings substantial advantages to studies aiming to elucidate the molecular genetic richness of not only meiofaunal, but also all complex eukaryotic communities.

Journal ArticleDOI
TL;DR: The main changes affecting the sector are described, including geographical expansion, fishing capacity-building, natural variability, environmental degradation and climate change, which identifies drivers and future challenges, while suggesting how new science, policies and interventions could best address those challenges.
Abstract: World population is expected to grow from the present 6.8 billion people to about 9 billion by 2050. The growing need for nutritious and healthy food will increase the demand for fisheries products from marine sources, whose productivity is already highly stressed by excessive fishing pressure, growing organic pollution, toxic contamination, coastal degradation and climate change. Looking towards 2050, the question is how fisheries governance, and the national and international policy and legal frameworks within which it is nested, will ensure a sustainable harvest, maintain biodiversity and ecosystem functions, and adapt to climate change. This paper looks at global fisheries production, the state of resources, contribution to food security and governance. It describes the main changes affecting the sector, including geographical expansion, fishing capacity-building, natural variability, environmental degradation and climate change. It identifies drivers and future challenges, while suggesting how new science, policies and interventions could best address those challenges.

Journal ArticleDOI
TL;DR: In this article, the influence of land use on stream metabolism across geographic regions is unknown, and there is limited understanding of how land use may alter variability in ecosystem metabolism across regions.
Abstract: SUMMARY 1. Rates of whole-system metabolism (production and respiration) are fundamental indicators of ecosystem structure and function. Although first-order, proximal controls are well understood, assessments of the interactions between proximal controls and distal controls, such as land use and geographic region, are lacking. Thus, the influence of land use on stream metabolism across geographic regions is unknown. Further, there is limited understanding of how land use may alter variability in ecosystem metabolism across regions. 2. Stream metabolism was measured in nine streams in each of eight regions (n = 72) across the United States and Puerto Rico. In each region, three streams were selected from a range of three land uses: agriculturally influenced, urban-influenced, and reference streams. Stream metabolism was estimated from diel changes in dissolved oxygen concentrations in each stream reach with correction for reaeration and groundwater input.

Journal ArticleDOI
TL;DR: In this paper, the authors used a distributed hydrological model, MIKE SHE, by using bi-criteria (i.e., two measurable variables, streamflow and water table depth) to describe a forested watershed that is characteristic of the lower Atlantic Coastal Plain.
Abstract: . Hydrological models are important tools for effective management, conservation and restoration of forested wetlands. The objective of this study was to test a distributed hydrological model, MIKE SHE, by using bi-criteria (i.e., two measurable variables, streamflow and water table depth) to describe the hydrological processes in a forested watershed that is characteristic of the lower Atlantic Coastal Plain. Simulations were compared against observations of both streamflow and water table depth measured on a first-order watershed (WS80) on the Santee Experimental Forest in South Carolina, USA. Model performance was evaluated using coefficient of determination (R2) and Nash-Sutcliffe's model efficiency (E). The E and root mean squared error (RMSE) were chosen as objective functions for sensitivity analysis of parameters. The model calibration and validation results demonstrated that the streamflow and water table depth were sensitive to most of the model input parameters, especially to surface detention storage, drainage depth, soil hydraulic properties, plant rooting depth, and surface roughness. Furthermore, the bi-criteria approach used for distributed model calibration and validation was shown to be better than the single-criterion in obtaining optimum model input parameters, especially for those parameters that were only sensitive to some specific conditions. Model calibration using the bi-criteria approach should be advantageous for constructing the uncertainty bounds of model inputs to simulate the hydrology for this type of forested watersheds. R2 varied from 0.60–0.99 for daily and monthly streamflow, and from 0.52–0.91 for daily water table depth. E changed from 0.53–0.96 for calibration and 0.51–0.98 for validation of daily and monthly streamflow, while E varied from 0.50–0.90 for calibration and 0.66–0.80 for validation of daily water table depth. This study showed that MIKE SHE could be a good candidate for simulating streamflow and water table depth in coastal plain watersheds.

Journal ArticleDOI
TL;DR: In this article, the authors present a new reconstruction of the 20th century global hydrography using fully coupled water balance and transport model in a flexible modeling framework, which allows a high level of configurability both in terms of input forcings and model structure.
Abstract: . This paper presents a new reconstruction of the 20th century global hydrography using fully coupled water balance and transport model in a flexible modeling framework. The modeling framework allows a high level of configurability both in terms of input forcings and model structure. Spatial and temporal trends in hydrological cycle components are assessed under "pre-industrial" conditions (without modern-day human activities) and contemporary conditions (incorporating the effects of irrigation and reservoir operations). The two sets of simulations allow the isolation of the trends arising from variations in the climate input driver alone and from human interventions. The sensitivity of the results to variations in input data was tested by using three global gridded datasets of precipitation. Our findings confirm that the expansion of irrigation and the construction of reservoirs has significantly and gradually impacted hydrological components in individual river basins. Variations in the volume of water entering the oceans annually, however, are governed primarily by variations in the climate signal alone with human activities playing a minor role. Globally, we do not find a significant trend in the terrestrial discharge over the last century. The largest impact of human intervention on the hydrological cycle arises from the operation of reservoirs that drastically changes the seasonal pattern of horizontal water transport in the river system and thereby directly and indirectly affects a number of processes such as ability to decompose organic matter or the cycling of nutrients in the river system.

Journal ArticleDOI
TL;DR: In this article, a practical modeling approach to solve some of the pitfalls of conventional numerical modeling of Rayleigh-type damping in inelastic structures is proposed, by modeling each structural element with an equivalent combination of one elastic element with stiffness-proportional damping, and two springs at its two ends with no stiffness proportional damping.

Journal ArticleDOI
TL;DR: In this paper, the results of an experiment to measure forest structure and biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica using a medium resolution lidar were presented.
Abstract: [1] In this paper we present the results of an experiment to measure forest structure and biomass dynamics over the tropical forests of La Selva Biological Station in Costa Rica using a medium resolution lidar. Our main objective was to observe changes in forest canopy height, related height metrics, and biomass, and from these map sources and sinks of carbon across the landscape. The Laser Vegetation Imaging Sensor (LVIS) measured canopy structure over La Selva in 1998 and again in 2005. Changes in waveform metrics were related to field-derived changes in estimated aboveground biomass from a series of old growth and secondary forest plots. Pairwise comparisons of nearly coincident lidar footprints between years showed canopy top height changes that coincided with expected changes based on land cover types. Old growth forests had a net loss in height of −0.33 m, while secondary forests had net gain of 2.08 m. Multiple linear regression was used to relate lidar metrics with biomass changes for combined old growth and secondary forest plots, giving an r2 of 0.65 and an RSE of 10.5 Mg/ha, but both parametric and bootstrapped confidence intervals were wide, suggesting weaker model performance. The plot level relationships were then used to map biomass changes across La Selva using LVIS at a 1 ha scale. The spatial patterns of biomass changes matched expected patterns given the distribution of land cover types at La Selva, with secondary forests showing a gain of 25 Mg/ha and old growth forests showing little change (2 Mg/ha). Prediction intervals were calculated to assess uncertainty for each 1 ha cell to ascertain whether the data and methods used could confidently estimate the sign (source or sink) of the biomass changes. The resulting map showed most of the old growth areas as neutral (no net biomass change), with widely scattered and isolated sources and sinks. Secondary forests in contrast were mostly sinks or neutral, but were never sources. By quantifying both the magnitude of biomass changes and the sensitivity of lidar to detect them, this work will help inform the formulation of future space missions focused on biomass dynamics, such as NASA's Deformation Ecosystem Structure and Dynamics of Ice mission.

Journal ArticleDOI
TL;DR: Loureiro et al. as discussed by the authors showed that the number of plasmoids in a system that exceeds a critical value of the Lundquist number (S) is unstable to the plasmoid instability.
Abstract: The Sweet–Parker layer in a system that exceeds a critical value of the Lundquist number (S) is unstable to the plasmoid instability. In this paper, a numerical scaling study has been done with an island coalescing system driven by a low level of random noise. In the early stage, a primary Sweet–Parker layer forms between the two coalescing islands. The primary Sweet–Parker layer breaks into multiple plasmoids and even thinner current sheets through multiple levels of cascading if the Lundquist number is greater than a critical value Sc≃4×104. As a result of the plasmoid instability, the system realizes a fast nonlinear reconnection rate that is nearly independent of S, and is only weakly dependent on the level of noise. The number of plasmoids in the linear regime is found to scales as S3/8, as predicted by an earlier asymptotic analysis [N. F. Loureiro et al., Phys. Plasmas 14, 100703 (2007)]. In the nonlinear regime, the number of plasmoids follows a steeper scaling, and is proportional to S. The thick...

Journal ArticleDOI
TL;DR: In this article, a review of forest carbon dynamics and recent policy and management activities in this arena is presented, focusing on the benefits of substituting wood for other building materials and in displacing fossil fuel energy, if standards for calculations can be developed.
Abstract: The objective of this review is to give ecologists and policy makers a better understanding of forest carbon dynamics and recent policy and management activities in this arena. The ecology of forest carbon is well understood, but measurement and projection of carbon sequestration at small scales can be costly. Some forest management activities qualify as offsets in various carbon markets. To promote wider use, a system is needed that will provide inexpensive and standardized approaches to forest carbon accounting that are not prone to dishonest handling. The prospects are fairly promising for development of such a system, but first, technical and organizational constraints must be overcome. In contrast, the benefits – in terms of greenhouse-gas reduction – of substituting wood for other building materials, and in displacing fossil fuel energy, could be realized immediately, if standards for calculations can be developed.

Journal ArticleDOI
TL;DR: The Holocene Peat Model (HPM) as mentioned in this paper is a simulation model of long-term peat accumulation, evaluated at a well-studied temperate bog in Ontario, Canada.
Abstract: . Peatland carbon and water cycling are tightly coupled, so dynamic modeling of peat accumulation over decades to millennia should account for carbon-water feedbacks. We present initial results from a new simulation model of long-term peat accumulation, evaluated at a well-studied temperate bog in Ontario, Canada. The Holocene Peat Model (HPM) determines vegetation community composition dynamics and annual net primary productivity based on peat depth (as a proxy for nutrients and acidity) and water table depth. Annual peat (carbon) accumulation is the net balance above- and below-ground productivity and litter/peat decomposition – a function of peat hydrology (controlling depth to and degree of anoxia). Peat bulk density is simulated as a function of degree of humification, and affects the water balance through its influence on both the growth rate of the peat column and on peat hydraulic conductivity and the capacity to shed water. HPM output includes both time series of annual carbon and water fluxes, peat height, and water table depth, as well as a final peat profile that can be "cored" and compared to field observations of peat age and macrofossil composition. A stochastic 8500-yr, annual precipitation time series was constrained by a published Holocene climate reconstruction for southern Quebec. HPM simulated 5.4 m of peat accumulation (310 kg C m-2) over 8500 years, 6.5% of total NPP over the period. Vascular plant functional types accounted for 65% of total NPP over 8500 years but only 35% of the final (contemporary) peat mass. Simulated age-depth and carbon accumulation profiles were compared to a radiocarbon dated 5.8 m, c.9000-yr core. The simulated core was younger than observations at most depths, but had a similar overall trajectory; carbon accumulation rates were generally higher in the simulation and were somewhat more variable than observations. HPM results were sensitive to century-scale anomalies in precipitation, with extended drier periods (precipitation reduced ∼10%) causing the peat profile to lose carbon (and height), despite relatively small changes in NPP.

Journal ArticleDOI
TL;DR: In this paper, the authors compare forest carbon estimates from Light Detection and Ranging (Lidar) data and QuickBird high-resolution satellite images, calibrated and validated by field measurements of individual trees.

Journal ArticleDOI
TL;DR: The declines apparent in this analysis parallel evidence from other sources, including police data, child welfare data, and the National Crime Victimization Survey, suggesting reductions in various types of childhood victimization in recent years.
Abstract: Objective To assess trends in children's exposure to abuse, violence, and crime victimizations. Design An analysis based on a comparison of 2 cross-sectional national telephone surveys using identical questions conducted in 2003 and 2008. Setting Telephone interview. Participants Experiences of children aged 2 to 17 years (2030 children in 2003 and 4046 children in 2008) were assessed through interviews with their caretakers and the children themselves. Outcome Measure Responses to the Juvenile Victimization Questionnaire. Results Several types of child victimization were reported significantly less often in 2008 than in 2003: physical assaults, sexual assaults, and peer and sibling victimizations, including physical bullying. There were also significant declines in psychological and emotional abuse by caregivers, exposure to community violence, and the crime of theft. Physical abuse and neglect by caregivers did not decline, and witnessing the abuse of a sibling increased. Conclusion The declines apparent in this analysis parallel evidence from other sources, including police data, child welfare data, and the National Crime Victimization Survey, suggesting reductions in various types of childhood victimization in recent years.