scispace - formally typeset
Search or ask a question
Institution

University of New Hampshire

EducationDurham, New Hampshire, United States
About: University of New Hampshire is a education organization based out in Durham, New Hampshire, United States. It is known for research contribution in the topics: Population & Solar wind. The organization has 9379 authors who have published 24025 publications receiving 1020112 citations. The organization is also known as: UNH.


Papers
More filters
Journal ArticleDOI
TL;DR: Findings indicated that over time, the experience of positive emotions functions to assist high-resilient individuals in their ability to recover effectively from daily stress.
Abstract: In 3 studies, the authors investigated the functional role of psychological resilience and positive emotions in the stress process. Studies 1a and 1b explored naturally occurring daily stressors. Study 2 examined data from a sample of recently bereaved widows. Across studies, multilevel random coefficient modeling analyses revealed that the occurrence of daily positive emotions serves to moderate stress reactivity and mediate stress recovery. Findings also indicated that differences in psychological resilience accounted for meaningful variation in daily emotional responses to stress. Higher levels of trait resilience predicted a weaker association between positive and negative emotions, particularly on days characterized by heightened stress. Finally, findings indicated that over time, the experience of positive emotions functions to assist high-resilient individuals in their ability to recover effectively from daily stress. Implications for research into protective factors that serve to inhibit the scope, severity, and diffusion of daily stressors in later adulthood are discussed.

1,209 citations

Journal ArticleDOI
TL;DR: The solar wind experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics as discussed by the authors, which consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron ‘strahl’ close to the magnetic field direction; and an on-board calibration system.
Abstract: The Solar Wind Experiment (SWE) on the WIND spacecraft is a comprehensive, integrated set of sensors which is designed to investigate outstanding problems in solar wind physics. It consists of two Faraday cup (FC) sensors; a vector electron and ion spectrometer (VEIS); a strahl sensor, which is especially configured to study the electron ‘strahl’ close to the magnetic field direction; and an on-board calibration system. The energy/charge range of the Faraday cups is 150 V to 8 kV, and that of the VEIS is 7 V to 24.8 kV. The time resolution depends on the operational mode used, but can be of the order of a few seconds for 3-D measurements. ‘Key parameters’ which broadly characterize the solar wind positive ion velocity distribution function will be made available rapidly from the GGS Central Data Handling Facility.

1,206 citations

Journal ArticleDOI
John K. Colbourne1, Michael E. Pfrender2, Michael E. Pfrender3, Donald L. Gilbert1, W. Kelley Thomas4, Abraham E. Tucker1, Abraham E. Tucker4, Todd H. Oakley5, Shin-ichi Tokishita6, Andrea Aerts7, Georg J. Arnold8, Malay Kumar Basu9, Malay Kumar Basu10, Darren J Bauer4, Carla E. Cáceres11, Liran Carmel10, Liran Carmel12, Claudio Casola1, Jeong Hyeon Choi1, John C. Detter7, Qunfeng Dong1, Qunfeng Dong13, Serge Dusheyko7, Brian D. Eads1, Thomas Fröhlich8, Kerry Geiler-Samerotte14, Kerry Geiler-Samerotte5, Daniel Gerlach15, Daniel Gerlach16, Phil Hatcher4, Sanjuro Jogdeo4, Sanjuro Jogdeo17, Jeroen Krijgsveld18, Evgenia V. Kriventseva16, Dietmar Kültz19, Christian Laforsch8, Erika Lindquist7, Jacqueline Lopez1, J. Robert Manak20, J. Robert Manak21, Jean Muller22, Jasmyn Pangilinan7, Rupali P Patwardhan1, Rupali P Patwardhan23, Samuel Pitluck7, Ellen J. Pritham24, Andreas Rechtsteiner25, Andreas Rechtsteiner1, Mina Rho1, Igor B. Rogozin10, Onur Sakarya26, Onur Sakarya5, Asaf Salamov7, Sarah Schaack24, Sarah Schaack1, Harris Shapiro7, Yasuhiro Shiga6, Courtney Skalitzky20, Zachary Smith1, Alexander Souvorov10, Way Sung4, Zuojian Tang1, Zuojian Tang27, Dai Tsuchiya1, Hank Tu26, Hank Tu7, Harmjan R. Vos18, Mei Wang7, Yuri I. Wolf10, Hideo Yamagata6, Takuji Yamada, Yuzhen Ye1, Joseph R. Shaw1, Justen Andrews1, Teresa J. Crease28, Haixu Tang1, Susan Lucas7, Hugh M. Robertson11, Peer Bork, Eugene V. Koonin10, Evgeny M. Zdobnov16, Evgeny M. Zdobnov29, Igor V. Grigoriev7, Michael Lynch1, Jeffrey L. Boore30, Jeffrey L. Boore7 
04 Feb 2011-Science
TL;DR: The Daphnia genome reveals a multitude of genes and shows adaptation through gene family expansions, and the coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random.
Abstract: We describe the draft genome of the microcrustacean Daphnia pulex, which is only 200 megabases and contains at least 30,907 genes. The high gene count is a consequence of an elevated rate of gene duplication resulting in tandem gene clusters. More than a third of Daphnia's genes have no detectable homologs in any other available proteome, and the most amplified gene families are specific to the Daphnia lineage. The coexpansion of gene families interacting within metabolic pathways suggests that the maintenance of duplicated genes is not random, and the analysis of gene expression under different environmental conditions reveals that numerous paralogs acquire divergent expression patterns soon after duplication. Daphnia-specific genes, including many additional loci within sequenced regions that are otherwise devoid of annotations, are the most responsive genes to ecological challenges.

1,204 citations

Journal ArticleDOI
13 Mar 2008-Nature
TL;DR: It is demonstrated that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.
Abstract: About a quarter of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins, indicating substantial sinks for nitrogen must exist in the landscape. Data from nitrogen stable isotope tracer experiments across 72 streams suggests that the total uptake of nitrate is related to ecosystem photosynthesis, and that denitrification is related to ecosystem respiration. A stream network model demonstrates that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks. Anthropogenic addition of bioavailable nitrogen to the biosphere is increasing1,2 and terrestrial ecosystems are becoming increasingly nitrogen-saturated3, causing more bioavailable nitrogen to enter groundwater and surface waters4,5,6. Large-scale nitrogen budgets show that an average of about 20–25 per cent of the nitrogen added to the biosphere is exported from rivers to the ocean or inland basins7,8, indicating that substantial sinks for nitrogen must exist in the landscape9. Streams and rivers may themselves be important sinks for bioavailable nitrogen owing to their hydrological connections with terrestrial systems, high rates of biological activity, and streambed sediment environments that favour microbial denitrification6,10,11. Here we present data from nitrogen stable isotope tracer experiments across 72 streams and 8 regions representing several biomes. We show that total biotic uptake and denitrification of nitrate increase with stream nitrate concentration, but that the efficiency of biotic uptake and denitrification declines as concentration increases, reducing the proportion of in-stream nitrate that is removed from transport. Our data suggest that the total uptake of nitrate is related to ecosystem photosynthesis and that denitrification is related to ecosystem respiration. In addition, we use a stream network model to demonstrate that excess nitrate in streams elicits a disproportionate increase in the fraction of nitrate that is exported to receiving waters and reduces the relative role of small versus large streams as nitrate sinks.

1,193 citations

Journal ArticleDOI
TL;DR: In this paper, a new conceptual model that explicitly identifies the processes controlling soil organic matter availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances is presented.
Abstract: The response of soil organic matter (OM) decomposition to increasing temperature is a critical aspect of ecosystem responses to global change The impacts of climate warming on decomposition dynamics have not been resolved due to apparently contradictory results from field and lab experiments, most of which has focused on labile carbon with short turnover times But the majority of total soil carbon stocks are comprised of organic carbon with turnover times of decades to centuries Understanding the response of these carbon pools to climate change is essential for forecasting longer-term changes in soil carbon storage Herein, we briefly synthesize information from recent studies that have been conducted using a wide variety of approaches In our effort to understand research to-date, we derive a new conceptual model that explicitly identifies the processes controlling soil OM availability for decomposition and allows a more explicit description of the factors regulating OM decomposition under different circumstances It explicitly defines resistance of soil OM to decomposition as being due either to its chemical conformation (quality )o r its physico-chemical protection from decomposition The former is embodied in the depolymerization process, the latter by adsorption/desorption and aggregate turnover We hypothesize a strong role for variation in temperature sensitivity as a function of reaction rates for both We conclude that important advances in understanding the temperature response of the processes that control substrate availability, depolymerization, microbial efficiency, and enzyme production will be needed to predict the fate of soil carbon stocks in a warmer world

1,175 citations


Authors

Showing all 9489 results

NameH-indexPapersCitations
Derek R. Lovley16858295315
Peter B. Reich159790110377
Jerry M. Melillo13438368894
Katja Klein129149987817
David Finkelhor11738258094
Howard A. Stone114103364855
James O. Hill11353269636
Tadayuki Takahashi11293257501
Howard Eichenbaum10827944172
John D. Aber10720448500
Andrew W. Strong9956342475
Charles T. Driscoll9755437355
Andrew D. Richardson9428232850
Colin A. Chapman9249128217
Nicholas W. Lukacs9136734057
Network Information
Related Institutions (5)
University of Maryland, College Park
155.9K papers, 7.2M citations

94% related

Pennsylvania State University
196.8K papers, 8.3M citations

94% related

University of Colorado Boulder
115.1K papers, 5.3M citations

92% related

Michigan State University
137K papers, 5.6M citations

92% related

Texas A&M University
164.3K papers, 5.7M citations

92% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
202351
2022183
20211,148
20201,128
20191,140
20181,089