scispace - formally typeset
Search or ask a question
Institution

Wageningen University and Research Centre

EducationWageningen, Netherlands
About: Wageningen University and Research Centre is a education organization based out in Wageningen, Netherlands. It is known for research contribution in the topics: Population & Sustainability. The organization has 23474 authors who have published 54833 publications receiving 2608897 citations.


Papers
More filters
Journal ArticleDOI
Ryan M Barber1, Nancy Fullman1, Reed J D Sorensen1, Thomas J. Bollyky  +757 moreInstitutions (314)
TL;DR: In this paper, the authors use the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) to improve and expand the quantification of personal health-care access and quality for 195 countries and territories from 1990 to 2015.

427 citations

Journal ArticleDOI
TL;DR: In this paper, the authors explore both the overarching goals and process of higher education from an emancipatory view and with regard to sustainability, and explore the need for contextualization and the debate surrounding it.

427 citations

Journal ArticleDOI
TL;DR: In this article, a combination of an economic (Global Trade Analysis Project, GTAP) and a biophysical (IMAGE) model is presented to evaluate the impact of liberalization on trade, production and land use.

426 citations

Journal ArticleDOI
TL;DR: The authors argue that R&D strength is more important for new product than service development, while a company's willingness to cannibalize organizational routines and prior investments are more important in the case of new service than new product development.

426 citations

Journal ArticleDOI
Ted R. Feldpausch1, Jon Lloyd1, Jon Lloyd2, Simon L. Lewis1, Simon L. Lewis3, Roel J. W. Brienen1, Manuel Gloor1, A. Monteagudo Mendoza, G. Lopez-Gonzalez1, Lindsay F. Banin1, Lindsay F. Banin4, K. Abu Salim5, Kofi Affum-Baffoe6, Miguel Alexiades7, Samuel Almeida8, Iêda Leão do Amaral, Ana Andrade, Luiz E. O. C. Aragão9, A. Araujo Murakami10, Eric Arets11, Luzmila Arroyo10, Timothy R. Baker1, Olaf Bánki12, Nicholas J. Berry13, Nallarett Davila Cardozo14, Jérôme Chave15, James A. Comiskey16, Esteban Álvarez, A. A. R. de Oliveira, A. Di Fiore17, Gloria Djagbletey18, Tomas F. Domingues19, Terry L. Erwin20, Philip M. Fearnside, Mabiane Batista França, Maria Aparecida Freitas8, Niro Higuchi, Yoshiko Iida21, E. M. Jimenez22, Abdul Rahman Kassim23, Timothy J. Killeen24, William F. Laurance2, Jon C. Lovett25, Yadvinder Malhi26, Beatriz Schwantes Marimon27, Ben Hur Marimon-Junior27, Eddie Lenza27, Andrew R. Marshall28, Casimiro Mendoza, Daniel J. Metcalfe29, Edward T. A. Mitchard13, David A. Neill, Bruce Walker Nelson, Reuben Nilus, Euler Melo Nogueira, Alexander Parada10, Kelvin S.-H. Peh30, A. Peña Cruz, M. C. Peñuela22, Nigel C. A. Pitman31, Adriana Prieto22, Carlos A. Quesada, Fredy Ramírez14, Hirma Ramírez-Angulo32, Jan Reitsma, Agustín Rudas22, Gustavo Saiz33, Rafael de Paiva Salomão8, Michael P. Schwarz1, Natalino Silva, Javier E. Silva-Espejo, Marcos Silveira34, Bonaventure Sonké35, Juliana Stropp, Hermann Taedoumg35, Sylvester Tan, H. ter Steege36, John Terborgh31, Mireia Torello-Raventos2, G. M. F. van der Heijden37, G. M. F. van der Heijden38, R. Vásquez, Emilio Vilanova32, Vincent A. Vos, Lee J. T. White39, Simon Willcock1, Hannsjorg Woell, Oliver L. Phillips1 
TL;DR: In this article, the effect of tree height (H) on tropical forest biomass and carbon storage estimates was investigated using data from 20 sites across four continents, and the results showed that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions.
Abstract: . Aboveground tropical tree biomass and carbon storage estimates commonly ignore tree height (H). We estimate the effect of incorporating H on tropics-wide forest biomass estimates in 327 plots across four continents using 42 656 H and diameter measurements and harvested trees from 20 sites to answer the following questions: 1. What is the best H-model form and geographic unit to include in biomass models to minimise site-level uncertainty in estimates of destructive biomass? 2. To what extent does including H estimates derived in (1) reduce uncertainty in biomass estimates across all 327 plots? 3. What effect does accounting for H have on plot- and continental-scale forest biomass estimates? The mean relative error in biomass estimates of destructively harvested trees when including H (mean 0.06), was half that when excluding H (mean 0.13). Power- and Weibull-H models provided the greatest reduction in uncertainty, with regional Weibull-H models preferred because they reduce uncertainty in smaller-diameter classes (≤40 cm D) that store about one-third of biomass per hectare in most forests. Propagating the relationships from destructively harvested tree biomass to each of the 327 plots from across the tropics shows that including H reduces errors from 41.8 Mg ha−1 (range 6.6 to 112.4) to 8.0 Mg ha−1 (−2.5 to 23.0). For all plots, aboveground live biomass was −52.2 Mg ha−1 (−82.0 to −20.3 bootstrapped 95% CI), or 13%, lower when including H estimates, with the greatest relative reductions in estimated biomass in forests of the Brazilian Shield, east Africa, and Australia, and relatively little change in the Guiana Shield, central Africa and southeast Asia. Appreciably different stand structure was observed among regions across the tropical continents, with some storing significantly more biomass in small diameter stems, which affects selection of the best height models to reduce uncertainty and biomass reductions due to H. After accounting for variation in H, total biomass per hectare is greatest in Australia, the Guiana Shield, Asia, central and east Africa, and lowest in east-central Amazonia, W. Africa, W. Amazonia, and the Brazilian Shield (descending order). Thus, if tropical forests span 1668 million km2 and store 285 Pg C (estimate including H), then applying our regional relationships implies that carbon storage is overestimated by 35 Pg C (31–39 bootstrapped 95% CI) if H is ignored, assuming that the sampled plots are an unbiased statistical representation of all tropical forest in terms of biomass and height factors. Our results show that tree H is an important allometric factor that needs to be included in future forest biomass estimates to reduce error in estimates of tropical carbon stocks and emissions due to deforestation.

426 citations


Authors

Showing all 23851 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Albert Hofman2672530321405
Frank B. Hu2501675253464
Willem M. de Vos14867088146
Willy Verstraete13992076659
Jonathan D. G. Jones12941780908
Bert Brunekreef12480681938
Pedro W. Crous11580951925
Marten Scheffer11135073789
Wim E. Hennink11060049940
Daan Kromhout10845355551
Peter H. Verburg10746434254
Marcel Dicke10761342959
Vincent W. V. Jaddoe106100844269
Hao Wu10566942607
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

96% related

University of Georgia
93.6K papers, 3.7M citations

91% related

Commonwealth Scientific and Industrial Research Organisation
79.9K papers, 3.3M citations

90% related

Ghent University
111K papers, 3.7M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
2022861
20214,144
20203,722
20193,443
20183,226