scispace - formally typeset
Search or ask a question
Institution

Wageningen University and Research Centre

EducationWageningen, Netherlands
About: Wageningen University and Research Centre is a education organization based out in Wageningen, Netherlands. It is known for research contribution in the topics: Population & Sustainability. The organization has 23474 authors who have published 54833 publications receiving 2608897 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: These methods, described in this paper, are especially valuable when investigating the effects of pesticide applications, environmental pollution and diseases on colony survival.
Abstract: SummaryA variety of methods are used in honey bee research and differ depending on the level at which the research is conducted. On an individual level, the handling of individual honey bees, including the queen, larvae and pupae are required. There are different methods for the immobilising, killing and storing as well as determining individual weight of bees. The precise timing of developmental stages is also an important aspect of sampling individuals for experiments. In order to investigate and manipulate functional processes in honey bees, e.g. memory formation and retrieval and gene expression, microinjection is often used. A method that is used by both researchers and beekeepers is the marking of queens that serves not only to help to locate her during her life, but also enables the dating of queens. Creating multiple queen colonies allows the beekeeper to maintain spare queens, increase brood production or ask questions related to reproduction. On colony level, very useful techniques are the measu...

406 citations

Journal ArticleDOI
TL;DR: A review of documented nontarget effects and the development and application of comprehensive and quick-scan environmental risk assessment methods for biological control introductions worldwide are discussed.
Abstract: More than 5000 introductions of about 2000 species of exotic arthropod agents for control of arthropod pests in 196 countries or islands during the past 120 years rarely have resulted in negative environmental effects. Yet, risks of environmental effects caused by releases of exotics are of growing concern. Twenty countries have implemented regulations for release of biological control agents. Soon, the International Standard for Phytosanitary Measures (ISPM3) will become the standard for all biological control introductions worldwide, but this standard does not provide methods by which to assess environmental risks. This review summarizes documented nontarget effects and discusses the development and application of comprehensive and quick-scan environmental risk assessment methods.

406 citations

Journal ArticleDOI
TL;DR: A series of fluorophores with single-exponential fluorescence decays in liquid solution at 20 degrees C were measured independently by nine laboratories using single-photon timing and multifrequency phase and modulation fluorometry instruments with lasers as excitation source.
Abstract: A series of fluorophores with single-exponential fluorescence decays in liquid solution at 20 °C were measured independently by nine laboratories using single-photon timing and multifrequency phase and modulation fluorometry instruments with lasers as excitation source. The dyes that can serve as fluorescence lifetime standards for time-domain and frequency-domain measurements are all commercially available, are photostable under the conditions of the measurements, and are soluble in solvents of spectroscopic quality (methanol, cyclohexane, water). These lifetime standards are anthracene, 9-cyanoanthracene, 9,10-diphenylanthracene, N-methylcarbazole, coumarin 153, erythrosin B, N-acetyl-l-tryptophanamide, 1,4-bis(5-phenyloxazol-2-yl)benzene, 2,5-diphenyloxazole, rhodamine B, rubrene, N-(3-sulfopropyl)acridinium, and 1,4-diphenylbenzene. At 20 °C, the fluorescence lifetimes vary from 89 ps to 31.2 ns, depending on fluorescent dye and solvent, which is a useful range for modern pico- and nanosecond time-dom...

406 citations

Journal ArticleDOI
Gane Ka-Shu Wong1, Gane Ka-Shu Wong2, Gane Ka-Shu Wong3, Bin Liu1, Jun Wang3, Jun Wang1, Yong Zhang4, Yong Zhang1, Xu Yang1, Zengjin Zhang1, Qingshun Meng1, Jun Zhou1, Dawei Li1, Jingjing Zhang1, Peixiang Ni1, Songgang Li4, Songgang Li1, Longhua Ran, Heng Li5, Jianguo Zhang1, Ruiqiang Li1, Shengting Li1, Hongkun Zheng1, Wei Lin1, Guangyuan Li1, Xiaoling Wang1, Wenming Zhao1, Jun Li1, Chen Ye1, Mingtao Dai1, Jue Ruan1, Yan Zhou3, Yuanzhe Li1, Ximiao He1, Yunze Zhang1, Jing Wang4, Jing Wang1, Xiangang Huang1, Wei Tong1, Jie Chen1, Jia Ye3, Jia Ye1, Chen Chen1, Ning Wei1, Guoqing Li1, Le Dong1, Fengdi Lan1, Yongqiao Sun1, Zhenpeng Zhang1, Zheng Yang1, Yingpu Yu3, Yanqing Huang1, Dandan He1, Yan Xi1, Dong Wei1, Qiuhui Qi1, Wenjie Li1, Jianping Shi1, Miaoheng Wang1, Fei Xie1, Jianjun Wang1, Xiaowei Zhang1, Pei Wang1, Yiqiang Zhao6, Ning Li6, Ning Yang6, Wei Dong1, Songnian Hu1, Changqing Zeng1, Wei-Mou Zheng5, Bailin Hao5, LaDeana W. Hillier7, Shiaw Pyng Yang7, Wesley C. Warren7, Richard K. Wilson7, Mikael Brandström8, Hans Ellegren8, Richard P. M. A. Crooijmans9, Jan J. van der Poel9, Henk Bovenhuis9, Martien A. M. Groenen9, Ivan Ovcharenko10, Laurie Gordon10, Laurie Gordon11, Lisa Stubbs12, Susan Lucas11, Tijana Glavina11, Andrea Aerts11, Peter K. Kaiser, Lisa Rothwell, John R. Young, Sally L. Rogers, Brian A Walker, Andy van Hateren, James C. Kaufman, Nat Bumstead, Susan J. Lamont13, Huaijun Zhou13, Paul M Hocking14, David R. Morrice14, Dirk-Jan de Koning14, Andy Law14, Neil Bartley14, David W. Burt14, Henry D. Hunt15, Hans H. Cheng15, Ulrika Gunnarsson8, Per Wahlberg8, Leif Andersson16, Leif Andersson8, Ellen Kindlund17, Martti T. Tammi17, Martti T. Tammi18, Björn Andersson17, Caleb Webber19, Chris P. Ponting19, Ian M. Overton20, Paul E. Boardman20, Haizhou Tang20, Simon J. Hubbard20, Stuart A. Wilson21, Jun Yu1, Jun Yu3, Jian Wang1, Jian Wang3, Huanming Yang3, Huanming Yang1 
09 Dec 2004-Nature
TL;DR: This map is based on a comparison of the sequences of three domestic chicken breeds with that of their wild ancestor, red jungle fowl, and indicates that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds.
Abstract: We describe a genetic variation map for the chicken genome containing 2.8 million single-nucleotide polymorphisms (SNPs). This map is based on a comparison of the sequences of three domestic chicken breeds (a broiler, a layer and a Chinese silkie) with that of their wild ancestor, red jungle fowl. Subsequent experiments indicate that at least 90% of the variant sites are true SNPs, and at least 70% are common SNPs that segregate in many domestic breeds. Mean nucleotide diversity is about five SNPs per kilobase for almost every possible comparison between red jungle fowl and domestic lines, between two different domestic lines, and within domestic lines--in contrast to the notion that domestic animals are highly inbred relative to their wild ancestors. In fact, most of the SNPs originated before domestication, and there is little evidence of selective sweeps for adaptive alleles on length scales greater than 100 kilobases.

406 citations

Journal ArticleDOI
TL;DR: Bacteria, Archea, viruses and Fungi will be at the heart of the discussion, while other rootassociated eukaryotes are the subjects of other chapters.
Abstract: Rhizosphere microorganisms have two faces, like Janus the Roman god of gates and doors who symbolizes changes and transitions, from one condition to another. One face looks at the plant root, the other sees the soil. The ears and the nose sense the other gods around and the mouths are wide open, swallowing as much as they can, and as described in Chapter 11, they also are busy talking. These faces may as well represent Hygieia (the Greek god of Health and Hygiene, the prevention of sickness and the continuation of good health) and Morta (the Roman god of death) for rhizosphere microbes can be beneficial, and promote plant growth and well being (Chapter 12) or detrimental, causing plant sickness and death (Chapter 13). It can be argued that many rhizosphere microbes are “neutral”, faceless saprophytes that decompose organic materials, perform mineralization and turnover processes. While most may not directly interact with the plant, their effects on soil biotic and abiotic parameters certainly have an impact on plant growth. Maybe they are Janus’ feet, the unsung heroes of the rhizosphere. This chapter addresses some aspects of the taxonomical and functional microbial diversity of the rhizosphere. Bacteria, Archea, viruses and Fungi will be at the heart of our discussion, while other rootassociated eukaryotes are the subjects of other chapters

406 citations


Authors

Showing all 23851 results

NameH-indexPapersCitations
Walter C. Willett3342399413322
Albert Hofman2672530321405
Frank B. Hu2501675253464
Willem M. de Vos14867088146
Willy Verstraete13992076659
Jonathan D. G. Jones12941780908
Bert Brunekreef12480681938
Pedro W. Crous11580951925
Marten Scheffer11135073789
Wim E. Hennink11060049940
Daan Kromhout10845355551
Peter H. Verburg10746434254
Marcel Dicke10761342959
Vincent W. V. Jaddoe106100844269
Hao Wu10566942607
Network Information
Related Institutions (5)
Institut national de la recherche agronomique
68.3K papers, 3.2M citations

96% related

University of Georgia
93.6K papers, 3.7M citations

91% related

Commonwealth Scientific and Industrial Research Organisation
79.9K papers, 3.3M citations

90% related

Ghent University
111K papers, 3.7M citations

90% related

Spanish National Research Council
220.4K papers, 7.6M citations

90% related

Performance
Metrics
No. of papers from the Institution in previous years
YearPapers
2023278
2022861
20214,144
20203,722
20193,443
20183,226