scispace - formally typeset
Search or ask a question

Showing papers in "Journal of Immunology in 2001"


Journal ArticleDOI
TL;DR: Regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.
Abstract: Thymectomy in mice on neonatal day 3 leads to the development of multiorgan autoimmune disease due to loss of a CD(+)CD25(+) T cell regulatory population in their peripheral lymphoid tissues. Here, we report the identification of a CD4(+) population of regulatory T cells in the circulation of humans expressing high levels of CD25 that exhibit in vitro characteristics identical with those of the CD4(+)CD25(+) regulatory cells isolated in mice. With TCR cross-linking, CD4(+)CD25(high) cells did not proliferate but instead totally inhibited proliferation and cytokine secretion by activated CD4(+)CD25(-) responder T cells in a contact-dependent manner. The CD4(+)CD25(high) regulatory T cells expressed high levels of CD45RO but not CD45RA, akin to the expression of CD45RB(low) on murine CD4(+)CD25(+) regulatory cells. Increasing the strength of signal by providing either costimulation with CD28 cross-linking or the addition of IL-2 to a maximal anti-CD3 stimulus resulted in a modest induction of proliferation and the loss of observable suppression in cocultures of CD4(+)CD25(high) regulatory cells and CD4(+)CD25(-) responder cells. Whereas higher ratios of CD4(+)CD25(high) T cells are required to suppress proliferation if the PD-L1 receptor is blocked, regulatory cell function is shown to persist in the absence of the PD-1/PD-L1 or CTLA-4/B7 pathway. Thus, regulatory CD4 T cells expressing high levels of the IL-2 receptor are present in humans, providing the opportunity to determine whether alterations of these populations of T cells are involved in the induction of human autoimmune disorders.

1,849 citations


Journal ArticleDOI
TL;DR: Using a systematic proteomic approach, the first extensive protein map of a particular exosome population is established and a novel category of exosomal proteins related to apoptosis is identified: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3.
Abstract: Dendritic cells constitutively secrete a population of small (50-90 nm diameter) Ag-presenting vesicles called exosomes. When sensitized with tumor antigenic peptides, dendritic cells produce exosomes, which stimulate anti-tumor immune responses and the rejection of established tumors in mice. Using a systematic proteomic approach, we establish the first extensive protein map of a particular exosome population; 21 new exosomal proteins were thus identified. Most proteins present in exosomes are related to endocytic compartments. New exosomal residents include cytosolic proteins most likely involved in exosome biogenesis and function, mainly cytoskeleton-related (cofilin, profilin I, and elongation factor 1alpha) and intracellular membrane transport and signaling factors (such as several annexins, rab 7 and 11, rap1B, and syntenin). Importantly, we also identified a novel category of exosomal proteins related to apoptosis: thioredoxin peroxidase II, Alix, 14-3-3, and galectin-3. These findings led us to analyze possible structural relationships between exosomes and microvesicles released by apoptotic cells. We show that although they both represent secreted populations of membrane vesicles relevant to immune responses, exosomes and apoptotic vesicles are biochemically and morphologically distinct. Therefore, in addition to cytokines, dendritic cells produce a specific population of membrane vesicles, exosomes, with unique molecular composition and strong immunostimulating properties.

1,445 citations


Journal ArticleDOI
TL;DR: Investigating how epithelia detect flagellin revealed that cell surface expression of Toll-like receptor 5 (TLR5) conferred NF-κB gene expression in response to flageLLin, providing a molecular basis for the polarity of this innate immune response.
Abstract: Flagellin, the structural component of bacterial flagella, is secreted by pathogenic and commensal bacteria. Flagellin activates proinflammatory gene expression in intestinal epithelia. However, only flagellin that contacts basolateral epithelial surfaces is proinflammatory; apical flagellin has no effect. Pathogenic Salmonella, but not commensal Escherichia coli, translocate flagellin across epithelia, thus activating epithelial proinflammatory gene expression. Investigating how epithelia detect flagellin revealed that cell surface expression of Toll-like receptor 5 (TLR5) conferred NF-kappaB gene expression in response to flagellin. The response depended on both extracellular leucine-rich repeats and intracellular Toll/IL-1R homology region of TLR5 as well as the adaptor protein MyD88. Furthermore, immunolocalization and cell surface-selective biotinylation revealed that TLR5 is expressed exclusively on the basolateral surface of intestinal epithelia, thus providing a molecular basis for the polarity of this innate immune response. Thus, detection of flagellin by basolateral TLR5 mediates epithelial-driven inflammatory responses to Salmonella.

1,371 citations


Journal ArticleDOI
TL;DR: In this paper, the authors investigated the nature and functional role of immature macrophages and dendritic cells (ImC) in cancer patients and determined that the population of ImC is composed of a small percentage (<2%) of hemopoietic progenitor cells.
Abstract: Defective dendritic cell (DC) function caused by abnormal differentiation of these cells is an important mechanism of tumor escape from immune system control. Previously, we have demonstrated that the number and function of DC were dramatically reduced in cancer patients. This effect was closely associated with accumulation of immature cells (ImC) in peripheral blood. In this study, we investigated the nature and functional role of those ImC. Using flow cytometry, electron microscopy, colony formation assays, and cell differentiation in the presence of different cell growth factors, we have determined that the population of ImC is composed of a small percentage (<2%) of hemopoietic progenitor cells, with all other cells being represented by MHC class I-positive myeloid cells. About one-third of ImC were immature macrophages and DC, and the remaining cells were immature myeloid cells at earlier stages of differentiation. These cells were differentiated into mature DC in the presence of 1 microM all-trans-retinoic acid. Removal of ImC from DC fractions completely restored the ability of the DC to stimulate allogeneic T cells. In two different experimental systems ImC inhibited Ag-specific T cell responses. Thus, immature myeloid cells generated in large numbers in cancer patients are able to directly inhibit Ag-specific T cell responses. This may represent a new mechanism of immune suppression in cancer and may suggest a new approach to cancer treatment.

1,309 citations


Journal ArticleDOI
TL;DR: The characterization of the MyD88-independent pathway via TLR4 is reported, a MyD 88-dependent pathway that is critical to the induction of inflammatory cytokines and a Myd88/TNFR-associated factor 6- independent pathway that regulates induction of IP-10.
Abstract: Bacterial lipopolysaccharide (LPS) triggers innate immune responses through Toll-like receptor (TLR) 4, a member of the TLR family that participates in pathogen recognition. TLRs recruit a cytoplasmic protein, MyD88, upon pathogen recognition, mediating its function for immune responses. Two major pathways for LPS have been suggested in recent studies, which are referred to as MyD88-dependent and -independent pathways. We report in this study the characterization of the MyD88-independent pathway via TLR4. MyD88-deficient cells failed to produce inflammatory cytokines in response to LPS, whereas they responded to LPS by activating IFN-regulatory factor 3 as well as inducing the genes containing IFN-stimulated regulatory elements such as IP-10. In contrast, a lipopeptide that activates TLR2 had no ability to activate IFN-regulatory factor 3. The MyD88-independent pathway was also activated in cells lacking both MyD88 and TNFR-associated factor 6. Thus, TLR4 signaling is composed of at least two distinct pathways, a MyD88-dependent pathway that is critical to the induction of inflammatory cytokines and a MyD88/TNFR-associated factor 6-independent pathway that regulates induction of IP-10.

1,107 citations


Journal ArticleDOI
TL;DR: The findings suggest that vitD3 acts directly on Th cells and can, in the absence of APC, enhance the development of a Th2 phenotype and augment the expression of the transcription factors c-maf and GATA-3.
Abstract: 1,25-Dihydroxyvitamin D3 (vitD3) is an immunoregulatory hormone with beneficial effects on Th1 mediated autoimmune diseases. Although the inhibitory effects of vitD3 on macrophages and dendritic cells are well documented, any direct effects of vitD3 on Th cell development are not clearly defined. Using CD4 Mel14 T cells derived from mice on a BALB/c and a C57BL/6 genetic background we examined the effect of vitD3 on Th cell development. We demonstrated that vitD3 affects Th cell polarization by inhibiting Th1 (IFN- production) and augmenting Th2 cell development (IL-4, IL-5, and IL-10 production). These effects were observed in cultures driven with splenic APC and Ag, as well as with anti-CD3 and anti-CD28 alone, indicating that CD4 cells can also be direct targets for vitD3. The enhanced Th2 development by vitD3 was found in both BALB/c and C57BL/6 mice. An increased expression of the Th2-specific transcription factors GATA-3 and c- maf correlated with the increased production of Th2 cytokines after vitD3 treatment. The vitD3-induced effects were largely mediated via IL-4, because neutralization of IL-4 almost completely abrogated the augmented Th2 cell development after vitD3 treatment. These findings suggest that vitD3 acts directly on Th cells and can, in the absence of APC, enhance the development of a Th2 phenotype and augment the expression of the transcription factors c-maf and GATA-3. Our findings suggest that the beneficial effects of vitD3 in autoimmune diseases and transplantation operate through prevention of strong Th1 responses via the action on the APC, while simultaneously directly acting on the T cell to enhance Th2 cell development. The Journal of Immunology, 2001, 167: 4974 – 4980.

1,036 citations


Journal ArticleDOI
TL;DR: It is suggested that innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules, thereby promoting immune surveillance at sites of inflammation.
Abstract: Extravascular fibrin deposition is an early and persistent hallmark of inflammatory responses. Fibrin is generated from plasma-derived fibrinogen, which escapes the vasculature in response to endothelial cell retraction at sites of inflammation. Our ongoing efforts to define the physiologic functions of extravasated fibrin(ogen) have led to the discovery, reported here, that fibrinogen stimulates macrophage chemokine secretion. Differential mRNA expression analysis and RNase protection assays revealed that macrophage inflammatory protein-1α (MIP-1α), MIP-1β, MIP-2, and monocyte chemoattractant protein-1 are fibrinogen inducible in the RAW264.7 mouse macrophage-like cell line, and ELISA confirmed that both RAW264.7 cells and primary murine thioglycolate-elicited peritoneal macrophages up-regulate the secretion of monocyte chemoattractant protein-1 >100-fold upon exposure to fibrinogen. Human U937 and THP-1 precursor-1 (THP-1) monocytic cell lines also secreted chemokines in response to fibrinogen, upon activation with IFN-γ and differentiation with vitamin D 3 , respectively. LPS contamination could not account for our observations, as fibrinogen-induced chemokine secretion was sensitive to heat denaturation and was unaffected by the pharmacologic LPS antagonist polymyxin B. Nevertheless, fibrinogen- and LPS-induced chemokine secretion both apparently required expression of functional Toll-like receptor 4, as each was diminished in macrophages derived from C3H/HeJ mice. Thus, innate responses to fibrinogen and bacterial endotoxin may converge at the evolutionarily conserved Toll-like recognition molecules. Our data suggest that extravascular fibrin(ogen) induces macrophage chemokine expression, thereby promoting immune surveillance at sites of inflammation.

950 citations


Journal ArticleDOI
TL;DR: Alloantigen-specific regulatory T cells contained within the CD45RBlow CD4+ T cell population are responsible for the maintenance of tolerance to donor alloantigens in vivo and require IL-10 for functional activity.
Abstract: We present evidence that donor-reactive CD4(+) T cells present in mice tolerant to donor alloantigens are phenotypically and functionally heterogeneous. CD4(+) T cells contained within the CD45RB(high) fraction remained capable of mediating graft rejection when transferred to donor alloantigen-grafted T cell-depleted mice. In contrast, the CD45RB(low) CD4(+) and CD25(+)CD4(+) populations failed to induce rejection, but rather, were able to inhibit rejection initiated by naive CD45RB(high) CD4(+) T cells. Analysis of the mechanism of immunoregulation transferred by CD45RB(low) CD4(+) T cells in vivo revealed that it was donor Ag specific and could be inhibited by neutralizing Abs reactive with IL-10, but not IL-4. CD45RB(low) CD4(+) T cells from tolerant mice were also immune suppressive in vitro, as coculture of these cells with naive CD45RB(high) CD4(+) T cells inhibited proliferation and Th1 cytokine production in response to donor alloantigens presented via the indirect pathway. These results demonstrate that alloantigen-specific regulatory T cells contained within the CD45RB(low) CD4(+) T cell population are responsible for the maintenance of tolerance to donor alloantigens in vivo and require IL-10 for functional activity.

829 citations


Journal ArticleDOI
TL;DR: Although there was no overall effect on lymphocytes from critically ill nonseptic patients (considered as a group), certain individual patients did exhibit significant loss of B and CD4 T cells in sepsis, which is especially significant because it occurs during life-threatening infection, a state in which massive lymphocyte clonal expansion should exist.
Abstract: Patients with sepsis have impaired host defenses that contribute to the lethality of the disorder. Recent work implicates lymphocyte apoptosis as a potential factor in the immunosuppression of sepsis. If lymphocyte apoptosis is an important mechanism, specific subsets of lymphocytes may be more vulnerable. A prospective study of lymphocyte cell typing and apoptosis was conducted in spleens from 27 patients with sepsis and 25 patients with trauma. Spleens from 16 critically ill nonseptic (3 prospective and 13 retrospective) patients were also evaluated. Immunohistochemical staining showed a caspase-9-mediated profound progressive loss of B and CD4 T helper cells in sepsis. Interestingly, sepsis did not decrease CD8 T or NK cells. Although there was no overall effect on lymphocytes from critically ill nonseptic patients (considered as a group), certain individual patients did exhibit significant loss of B and CD4 T cells. The loss of B and CD4 T cells in sepsis is especially significant because it occurs during life-threatening infection, a state in which massive lymphocyte clonal expansion should exist. Mitochondria-dependent lymphocyte apoptosis may contribute to the immunosuppression in sepsis by decreasing the number of immune effector cells. Similar loss of lymphocytes may be occurring in critically ill patients with other disorders.

821 citations


Journal ArticleDOI
TL;DR: The results suggest that BLyS may be a useful marker for early activation of an autoimmune diathesis and likely plays a critical role in triggering activation of self-Ag-driven autoimmune B cells in human SLE and may provide an effective therapeutic target in systemic autoimmunity.
Abstract: Increased levels of B lymphocyte stimulator (BLyS) are associated with systemic autoimmunity in animal models of spontaneous autoimmune disease, and transgenic animals expressing BLyS develop typical autoimmune disease. Here, we demonstrate significant elevations of BLyS in the patients with systemic lupus erythematosus (SLE). The BLyS isolated from the sera of SLE patients had the same m.w. as the natural soluble form and was able to stimulate B cell activation in vitro. Increased BLyS in SLE patients was partially associated with higher levels of anti-dsDNA Ab of the IgG, IgM, and IgA classes, but not associated with the disease activity. Our results suggest that BLyS may be a useful marker for early activation of an autoimmune diathesis and likely plays a critical role in triggering activation of self-Ag-driven autoimmune B cells in human SLE. BLyS may provide an effective therapeutic target in systemic autoimmunity.

772 citations


Journal ArticleDOI
TL;DR: The results broaden the immunoregulatory role played by CD4+CD25+ T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8- T cells to tumor or foreign Ags.
Abstract: CD4(+)CD25(+) regulatory T cells inhibit organ-specific autoimmune diseases induced by CD4(+)CD25(-) T cells and are potent suppressors of CD4(+)CD25(-) T cell activation in vitro. We demonstrate that CD4(+)CD25(+) T cells also suppress both proliferation and IFN-gamma production by CD8(+) T cells induced either by polyclonal or Ag-specific stimuli. CD4(+)CD25(+) T cells inhibit the activation of CD8(+) responders by inhibiting both IL-2 production and up-regulation of IL-2Ralpha-chain (CD25) expression. Suppression is mediated via a T-T interaction as activated CD4(+)CD25(+) T cells suppress the responses of TCR-transgenic CD8(+) T cells stimulated with soluble peptide-MHC class I tetramers in the complete absence of APC. These results broaden the immunoregulatory role played by CD4(+)CD25(+) T cells in the prevention of autoimmune diseases, but also raise the possibility that they may hinder the induction of effector CD8(+) T cells to tumor or foreign Ags.

Journal ArticleDOI
TL;DR: An important regulatory role for the arginase biosynthetic pathway in the regulation of inflammation is revealed and differential activation of Arg-1/NOS-2 is a critical determinant in the pathogenesis of granuloma formation.
Abstract: Type 2 cytokines regulate fibrotic liver pathology in mice infected with Schistosoma mansoni. Switching the immune response to a type 1-dominant reaction has proven highly effective at reducing the pathologic response. Activation of NOS-2 is critical, because type 1-deviated/NO synthase 2 (NOS-2)-deficient mice completely fail to control their response. Here, we demonstrate the differential regulation of NOS-2 and arginase type 1 (Arg-1) by type 1/type 2 cytokines in vivo and for the first time show a critical role for arginase in the pathogenesis of schistosomiasis. Using cytokine-deficient mice and two granuloma models, we show that induction of Arg-1 is type 2 cytokine dependent. Schistosome eggs induce Arg-1, while Mycobacterium avium-infected mice develop a dominant NOS-2 response. IFN-gamma suppresses Arg-1 activity, because type 1 polarized IL-4/IL-10-deficient, IL-4/IL-13-deficient, and egg/IL-12-sensitized animals fail to up-regulate Arg-1 following egg exposure. Notably, granuloma size decreases in these type-1-deviated/Arg-1-unresponsive mice, suggesting an important regulatory role for Arg-1 in schistosome egg-induced pathology. To test this hypothesis, we administered difluoromethylornithine to block ornithine-aminodecarboxylase, which uses the product of arginine metabolism, L-ornithine, to generate polyamines. Strikingly, granuloma size and hepatic fibrosis increased in the ornithine-aminodecarboxylase-inhibited mice. Furthermore, we show that type 2 cytokine-stimulated macrophages produce proline under strict arginase control. Together, these data reveal an important regulatory role for the arginase biosynthetic pathway in the regulation of inflammation and demonstrate that differential activation of Arg-1/NOS-2 is a critical determinant in the pathogenesis of granuloma formation.

Journal ArticleDOI
TL;DR: It is concluded that IEC limit dysregulated LPS signaling by down-regulating expression of MD-2 and TLR4 and the remainder of the intracellular L PS signaling pathway is functionally intact.
Abstract: The lumenal surface of the colonic epithelium is continually exposed to Gram-negative commensal bacteria and LPS. Recognition of LPS by Toll-like receptor (TLR)-4 results in proinflammatory gene expression in diverse cell types. Normally, however, commensal bacteria and their components do not elicit an inflammatory response from intestinal epithelial cells (IEC). The aim of this study is to understand the molecular mechanisms by which IEC limit chronic activation in the presence of LPS. Three IEC lines (Caco-2, T84, HT-29) were tested for their ability to activate an NF-kappaB reporter gene in response to purified, protein-free LPS. No IEC line responded to LPS, whereas human dermal microvessel endothelial cells (HMEC) did respond to LPS. IEC responded vigorously to IL-1beta in this assay, demonstrating that the IL-1 receptor signaling pathway shared by TLRs was intact. To determine the reason for LPS hyporesponsiveness in IEC, we examined the expression of TLR4 and MD-2, a critical coreceptor for TLR4 signaling. IEC expressed low levels of TLR4 compared with HMEC and none expressed MD-2. To determine whether the low level of TLR4 expression or absent MD-2 was responsible for the LPS signaling defect in IEC, the TLR4 or MD-2 gene was transiently expressed in IEC lines. Transient transfection of either gene individually was not sufficient to restore LPS signaling, but cotransfection of TLR4 and MD-2 in IEC led to synergistic activation of NF-kappaB and IL-8 reporter genes in response to LPS. We conclude that IEC limit dysregulated LPS signaling by down-regulating expression of MD-2 and TLR4. The remainder of the intracellular LPS signaling pathway is functionally intact.

Journal ArticleDOI
TL;DR: Multivariate logistic regression analysis of tissue cytokines and chemokines identified two parameters, in situ transcription of lymphotoxin (LT)-β and of B lymphocyte chemoattractant (BLC; BLC/CXCL13), that were predictors for FDC recruitment and synovial GC formation.
Abstract: In rheumatoid arthritis (RA), tissue-infiltrating lymphocytes can be arranged in sophisticated organizations that resemble microstructures usually formed in secondary lymphoid organs. Molecular pathways and host risk factors involved in this process of lymphoid neogenesis remain to be defined. In a series of 64 synovial tissue biopsies, lymphoid follicles with germinal centers (GCs) were found in 23.4% of the patients. Follicular dendritic cells (FDCs) were exclusively present in tissues with GCs, suggesting that the recruitment or in situ maturation of FDCs is a critical factor for GC formation in the synovial membrane. Primary follicles were absent, emphasizing the role of Ag recognition in the generation of inflammation-associated lymphoid organogenesis. Multivariate logistic regression analysis of tissue cytokines and chemokines identified two parameters, in situ transcription of lymphotoxin (LT)-beta and of B lymphocyte chemoattractant (BLC; BLC/CXCL13), that were predictors for FDC recruitment and synovial GC formation. LT-beta and BLC/CXCL13 were found to be independent variables that could, in part, compensate for each other to facilitate GC formation. Prediction models incorporating in situ transcription of LT-beta and BLC/CXCL13 had high negative yet moderate positive predictive values, suggesting that LT-beta and BLC/CXCL13 are necessary but not sufficient. LT-beta protein was detected on a subset of mantle zone and GC B cells, but also on T cells in follicular structures. BLC/CXCL13 was produced by FDCs in follicular centers, but was predominantly found in endothelial cells and synovial fibroblasts, suggesting heterotypic signaling between cells of the synovial membrane and infiltrating lymphocytes in regulating extranodal lymphoid neogenesis.

Journal ArticleDOI
TL;DR: Results show that deiminated forms of fibrin deposited in the rheumatoid synovial membranes are the major target of AFA, and suggest that autoimmunization against deimination fibrIn is a critical step in RA pathogenesis.
Abstract: IgG antifilaggrin autoantibodies (AFA) are the most specific serological markers of rheumatoid arthritis In epithelial tissues, they recognize citrulline-bearing epitopes present on various molecular forms of (pro)filaggrin Histological analysis of rheumatoid synovial membranes with an Ab to citrulline showed labeling of interstitial amorphous deposits and mononuclear cells of various types Immunochemical analysis of exhaustive sequential extracts of the same tissues showed that they contain several deiminated (citrulline containing) proteins Among them, two proteins, p64--78 and p55--61, present in urea-DTT and guanidine extracts, were shown by immunoblotting to be specifically targeted by AFA By amino-terminal sequencing the proteins were identified as deiminated forms of the alpha- and beta-chains of fibrin, respectively Their identity was confirmed using several Abs specific for the A alpha- and/or to the B beta-chain of fibrin(ogen) Moreover, AFA-positive rheumatoid arthritis (RA) sera and purified AFA were highly reactive to the A alpha- and B beta-chains of human fibrinogen only after deimination of the molecules by a peptidylarginine deiminase Autoantibodies affinity purified from a pool of RA sera onto deiminated fibrinogen were reactive toward all of the epithelial and synovial targets of AFA This confirmed that the autoantibodies to the deiminated A alpha-and B beta-chains of fibrinogen, the autoantibodies to the synovial proteins p64--78 and p55--61, and, lastly, AFA, constitute largely overlapping autoantibody populations These results show that deiminated forms of fibrin deposited in the rheumatoid synovial membranes are the major target of AFA They suggest that autoimmunization against deiminated fibrin is a critical step in RA pathogenesis

Journal ArticleDOI
TL;DR: TLRs are expressed in iDC and are involved in responses to at least one pathogen-derived substance, LPS, and its extremely low surface expression implies that it is a very efficient signal transducer in i DC.
Abstract: A number of pathogens induce immature dendritic cells (iDC) to migrate to lymphoid organs where, as mature DC (mDC), they serve as efficient APC. We hypothesized that pathogen recognition by iDC is mediated by Toll-like receptors (TLRs), and asked which TLRs are expressed during the progression of monocytes to mDC. We first measured mRNA levels for TLRs 1-5 and MD2 (a protein required for TLR4 function) by Northern analysis. For most TLRs, message expression decreased severalfold as monocytes differentiated into iDC, but opposing this trend, TLR3 and MD2 showed marked increases during iDC formation. When iDC were induced to mature with LPS or TNF-alpha, expression of most TLRs transiently increased and then nearly disappeared. Stimulation of iDC, but not mDC, with LPS resulted in the activation of IL-1 receptor-associated kinase, an early component in the TLR signaling pathway, strongly suggesting that LPS signals through a TLR. Surface expression of TLRs 1 and 4, as measured by mAb binding, was very low, corresponding to a few thousand molecules per cell in monocytes, and a few hundred or less in iDC. We conclude that TLRs are expressed in iDC and are involved in responses to at least one pathogen-derived substance, LPS. If TLR4 is solely responsible for LPS signaling in humans, as it is in mice, then its extremely low surface expression implies that it is a very efficient signal transducer in iDC.

Journal ArticleDOI
TL;DR: It is demonstrated that a short treatment with immunosuppressive agents, such as 1α,25-dihydroxyvitamin D3/mycophenolate mofetil, induces tolerance to islet allografts associated with an increased frequency of CD4+CD25+ regulatory cells that can adoptively transfer transplantation tolerance.
Abstract: 1alpha,25-dihydroxyvitamin D3, the active form of vitamin D3, and mycophenolate mofetil, a selective inhibitor of T and B cell proliferation, modulate APC function and induce dendritic cells (DCs) with a tolerogenic phenotype. Here we show that a short treatment with these agents induces tolerance to fully mismatched mouse islet allografts that is stable to challenge with donor-type spleen cells and allows acceptance of donor-type vascularized heart grafts. Peritransplant macrophages and DCs from tolerant mice express down-regulated CD40, CD80, and CD86 costimulatory molecules. In addition, DCs from the graft area of tolerant mice secrete, upon stimulation with CD4+ cells, 10-fold lower levels of IL-12 compared with DCs from acutely rejecting mice, and induce a CD4+ T cell response characterized by selective abrogation of IFN-gamma production. CD4+ but not CD8+ or class II+ cells from tolerant mice, transferred into naive syngeneic recipients, prevent rejection of donor-type islet grafts. Graft acceptance is associated with impaired development of IFN-gamma-producing type 1 CD4+ and CD8+ cells and an increased percentage of CD4+CD25+ regulatory cells expressing CD152 in the spleen and in the transplant-draining lymph node. Transfer of CD4+CD25+ cells from tolerant but not naive mice protects 100% of the syngeneic recipients from islet allograft rejection. These results demonstrate that a short treatment with immunosuppressive agents, such as 1alpha,25-dihydroxyvitamin D3/mycophenolate mofetil, induces tolerance to islet allografts associated with an increased frequency of CD4+CD25+ regulatory cells that can adoptively transfer transplantation tolerance.

Journal ArticleDOI
TL;DR: For instance, the authors found that the mature dendritic cells (DC) populations (CD4(+)8(-), CD4(-)8−, CD4−8− and CD4+8−) showed similar uptake of injected soluble OVA, but they differed markedly in their capacity to present this Ag and activate proliferation in OVA-specific CD4 or CD8 T cells.
Abstract: Mouse spleen contains three distinct mature dendritic cell (DC) populations (CD4(+)8(-), CD4(-)8(-), and CD4(-)8(+)) which retain a capacity to take up particulate and soluble AGS: Although the three splenic DC subtypes showed similar uptake of injected soluble OVA, they differed markedly in their capacity to present this Ag and activate proliferation in OVA-specific CD4 or CD8 T cells. For class II MHC-restricted presentation to CD4 T cells, the CD8(-) DC subtypes were more efficient, but for class I MHC-restricted presentation to CD8 T cells, the CD8(+) DC subtype was far more effective. This differential persisted when the DC were activated with LPS. The CD8(+) DC are therefore specialized for in vivo cross-presentation of exogenous soluble Ags into the class I MHC presentation pathway.

Journal ArticleDOI
TL;DR: Findings indicate that hTLR9 plays a critical role in the CpG DNA-mediated activation of human cells and evolutionary divergence between TLR9 molecules underlies species-specific differences in the recognition of bacterial DNA.
Abstract: Unmethylated CpG motifs present in bacterial DNA stimulate a rapid and robust innate immune response. Human cell lines and PBMC that recognize CpG DNA express membrane-bound human Toll-like receptor 9 (hTLR9). Cells that are not responsive to CpG DNA become responsive when transfected with hTLR9. Expression of hTLR9 dramatically increases uptake of CpG (but not control) DNA into endocytic vesicles. Upon cell stimulation, hTLR9 and CpG DNA are found in the same endocytic vesicles. Cells expressing hTLR9 are stimulated by CpG motifs that are active in primates but not rodents, suggesting that evolutionary divergence between TLR9 molecules underlies species-specific differences in the recognition of bacterial DNA. These findings indicate that hTLR9 plays a critical role in the CpG DNA-mediated activation of human cells.

Journal ArticleDOI
TL;DR: It is demonstrated that IFN-α strongly enhances IL-10-induced differentiation of functional Tr1 cells, which represents a first major step in establishing specific culture conditions to generate T regulatory cells for biological and biochemical analysis, and for cellular therapy to induce peripheral tolerance in humans.
Abstract: CD4+ T regulatory type 1 (Tr1) cells suppress Ag-specific immune responses in vitro and in vivo Although IL-10 is critical for the differentiation of Tr1 cells, the effects of other cytokines on differentiation of naive T cells into Tr1 cells have not been investigated Here we demonstrate that endogenous or exogenous IL-10 in combination with IFN-α, but not TGF-β, induces naive CD4+ T cells derived from cord blood to differentiate into Tr1 cells: IL-10+IFN-γ+IL-2−/lowIL-4− Naive CD4+ T cells derived from peripheral blood require both exogenous IL-10 and IFN-α for Tr1 cell differentiation The proliferative responses of the Tr1-containing lymphocyte populations, following activation with anti-CD3 and anti-CD28 mAbs, were reduced Similarly, cultures containing Tr1 cells displayed reduced responses to alloantigens via a mechanism that was partially mediated by IL-10 and TGF-β More importantly, Tr1-containing populations strongly suppressed responses of naive T cells to alloantigens Collectively, these results show that IFN-α strongly enhances IL-10-induced differentiation of functional Tr1 cells, which represents a first major step in establishing specific culture conditions to generate T regulatory cells for biological and biochemical analysis, and for cellular therapy to induce peripheral tolerance in humans

Journal ArticleDOI
TL;DR: It is concluded that CD25+ CD45RBlow CD 4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.
Abstract: The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25+ subpopulation of naturally activated (CD45RBlow) CD4 T cells, but not CD25− CD45RBlow CD4 T cells, inhibits the accumulation of cotransferred CD45RBhigh CD4 T cells in lymphocyte-deficient mice. However, both CD25+ and CD25− CD45RBlow CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4+ cells, we conclude that expansion control and disease prevention are largely independent processes. CD25+ CD45RBlow CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RBhigh CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25+ CD45RBlow CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25− CD45RBlow or CD45RBhigh CD4 T cells. We conclude that CD25+ CD45RBlow CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells.

Journal ArticleDOI
TL;DR: It is observed that after K/B×N serum transfer, the earliest clinical signs of inflammation in the ankle joint correlated with the presence of neutrophils in the synovial regions of recipient mouse ankle joints, which indicates a critical role for neutrophil in initiating and maintaining inflammatory processes in the joint.
Abstract: Neutrophils are prominent participants in the joint inflammation of human rheumatoid arthritis (RA) patients, but the extent of their role in the inductive phase of joint inflammation is unknown In the K/B×N mouse RA model, transfer of autoreactive Ig from the K/B×N mouse into mice induces a rapid and profound joint-specific inflammatory response reminiscent of human RA We observed that after K/B×N serum transfer, the earliest clinical signs of inflammation in the ankle joint correlated with the presence of neutrophils in the synovial regions of recipient mouse ankle joints In this study, we investigated the role of neutrophils in the early inflammatory response to transferred arthritogenic serum from the K/B×N transgenic mouse Mice were treated with a neutrophil-depleting mAb before and following transfer of arthritogenic serum and scored for clinical indications of inflammation and severity of swelling in ankle joints and front paws In the absence of neutrophils, mice were completely resistant to the inflammatory effects of K/B×N serum Importantly, depletion of neutrophils in diseased recipient mice up to 5 days after serum transfer reversed the inflammatory reaction in the joints Transfer of serum into mice deficient in the generation of nitrogen or oxygen radicals ( inducible NO synthase 2 or gp91 phox genes, respectively) gave normal inflammatory responses, indicating that neither pathway is essential for disease induction These studies have identified a critical role for neutrophils in initiating and maintaining inflammatory processes in the joint

Journal ArticleDOI
TL;DR: Evidence is presented that Trypanosoma cruzi-derived GPI anchors and GIPLs trigger CD25 expression on Chinese hamster ovary-K1 cells transfected with CD14 and Toll-like receptor-2 (TLR-2), but not wild-type (TLr-2-deficient) Chinese hamsters ovary cells, which may initiate host innate defense mechanisms and inflammatory response during protozoan infection.
Abstract: Glycosylphosphatidylinositol (GPI) anchors and glycoinositolphospholipids (GIPLs) from parasitic protozoa have been shown to exert a wide variety of effects on cells of the host innate immune system. However, the receptor(s) that are triggered by these protozoan glycolipids has not been identified. Here we present evidence that Trypanosoma cruzi-derived GPI anchors and GIPLs trigger CD25 expression on Chinese hamster ovary-K1 cells transfected with CD14 and Toll-like receptor-2 (TLR-2), but not wild-type (TLR-2-deficient) Chinese hamster ovary cells. The protozoan-derived GPI anchors and GIPLs containing alkylacylglycerol and saturated fatty acid chains or ceramide were found to be active in a concentration range of 100 nM to 1 microM. More importantly, the GPI anchors purified from T. cruzi trypomastigotes, which contain a longer glycan core and unsaturated fatty acids in the sn-2 position of the alkylacylglycerolipid component, triggered TLR-2 at subnanomolar concentrations. We performed experiments with macrophages from TLR-2 knockout and TLR-4 knockout mice, and found that TLR-2 expression appears to be essential for induction of IL-12, TNF-alpha, and NO by GPI anchors derived from T. cruzi trypomastigotes. Thus, highly purified GPI anchors from T. cruzi parasites are potent activators of TLR-2 from both mouse and human origin. The activation of TLR-2 may initiate host innate defense mechanisms and inflammatory response during protozoan infection, and may provide new strategies for immune intervention during protozoan infections.

Journal ArticleDOI
TL;DR: It is found that immature monocyte-derived DCs released low but sizeable amounts of IL-10, and addition of an anti-IL-10-neutralizing Ab to immature DCs as well as to soluble CD40 ligand- or LPS-maturing DCs led to enhanced expression of surface CD83, CD80, CD86, and MHC molecules and markedly augmented release of TNF-α and IL-12, but diminished IL- 10 mRNA expression.
Abstract: IL-10 is a critical cytokine that blocks the maturation of dendritic cells (DCs), but the relevance of autocrine IL-10 on DC functions has not been investigated. In this study, we found that immature monocyte-derived DCs released low but sizeable amounts of IL-10. After stimulation with bacteria, LPS, lipoteichoic acid, or soluble CD40 ligand, DCs secreted high levels of IL-10. Addition of an anti-IL-10-neutralizing Ab to immature DCs as well as to soluble CD40 ligand- or LPS-maturing DCs led to enhanced expression of surface CD83, CD80, CD86, and MHC molecules and markedly augmented release of TNF-alpha and IL-12, but diminished IL-10 mRNA expression. Moreover, DCs treated with anti-IL-10 Ab showed an increased capacity to activate allogeneic T cells and primed naive T cells to a more prominent Th1 polarization. DC maturation and IL-10 neutralization were associated with enhanced accumulation of the IL-10 receptor binding chain (IL-10R1) mRNA and intracellular IL-10R1 protein. In contrast, surface IL-10R1 and IL-10 binding activity diminished in mature DCs. These results indicate that autocrine IL-10 prevents spontaneous maturation of DCs in vitro, limits LPS- and CD40-mediated maturation, and increases IL-10 production by DCs. Moreover, IL-10R expression appears to be regulated by both transcriptional and posttranscriptional mechanisms. Endogenous IL-10 and IL-10R can be relevant targets for the manipulation of DC functions.

Journal ArticleDOI
TL;DR: Analysis of hundreds of novel ODN resulted in the identification and characterization of two structurally distinct “clusters” of immunostimulatory CpG ODN that preferentially stimulates IFN-γ production by NK cells, whereas the other (“K”) stimulates cell proliferation and the production of IL-6 and IgM by monocytes and B cells.
Abstract: Oligodeoxynucleotides (ODN) that contain unmethylated CpG dinucleotides trigger a strong innate immune response in vertebrates. CpG ODN show promise as vaccine adjuvants, anti-allergens, and immunoprotective agents in animal models. Their transition to clinical use requires the identification of motifs that are optimally stimulatory in humans. Analysis of hundreds of novel ODN resulted in the identification and characterization of two structurally distinct "clusters" of immunostimulatory CpG ODN. One cluster ("D") preferentially stimulates IFN-gamma production by NK cells, whereas the other ("K") stimulates cell proliferation and the production of IL-6 and IgM by monocytes and B cells. The distinct immunostimulatory properties of K and D ODN can improve the design of CpG-based products to achieve specific therapeutic goals.

Journal ArticleDOI
TL;DR: It is suggested that microglial activation contributes to NMDA excitotoxicity and that minocycline, a tetracycline derivative, represents a potential therapeutic agent for brain diseases.
Abstract: Glutamate excitotoxicity to a large extent is mediated through activation of the N -methyl-d-aspartate (NMDA)-gated ion channels in several neurodegenerative diseases and ischemic stroke. Minocycline, a tetracycline derivative with antiinflammatory effects, inhibits IL-1β-converting enzyme and inducible nitric oxide synthase up-regulation in animal models of ischemic stroke and Huntington’s disease and is therapeutic in these disease animal models. Here we report that nanomolar concentrations of minocycline protect neurons in mixed spinal cord cultures against NMDA excitotoxicity. NMDA treatment alone induced microglial proliferation, which preceded neuronal death, and administration of extra microglial cells on top of these cultures enhanced the NMDA neurotoxicity. Minocycline inhibited all these responses to NMDA. Minocycline also prevented the NMDA-induced proliferation of microglial cells and the increased release of IL-1β and nitric oxide in pure microglia cultures. Finally, minocycline inhibited the NMDA-induced activation of p38 mitogen-activated protein kinase (MAPK) in microglial cells, and a specific p38 MAPK inhibitor, but not a p44/42 MAPK inhibitor, reduced the NMDA toxicity. Together, these results suggest that microglial activation contributes to NMDA excitotoxicity and that minocycline, a tetracycline derivative, represents a potential therapeutic agent for brain diseases.

Journal ArticleDOI
TL;DR: Evidence is provided for multiple selection points among immature peripheral B cells, suggesting that the B cell repertoire is shaped by multiple unique selection events that occur within the immature/transitional peripheral B cell pool.
Abstract: Although immature/transitional peripheral B cells may remain susceptible to selection pressures before full maturation, the nature and timing of these selection events remain unclear. We show that correlated expression of surface (s) IgM (sIgM), CD23, and AA4 defines three nonproliferative subpopulations of immature/transitional peripheral B cells. We designate these populations transitional (T) 1 (AA4+CD23−sIgMhigh), T2 (AA4+CD23+sIgMhigh), and T3 (AA4+CD23+sIgMlow). Cells within all three subsets are functionally immature as judged by their failure to proliferate following sIgM cross-linking in vitro, and their rapid rate of turnover in vivo as assessed by 5-bromo-2′-deoxyuridine labeling. These labeling studies also reveal measurable cell loss at both the T1-T2 and T2-T3 transitions, suggesting the existence of multiple selection points within the peripheral immature B cell pool. Furthermore, we find that Btk-deficient (xid) mice exhibit an incomplete developmental block at the T2-T3 transition within the immature B cell pool. This contrasts markedly with lyn−/− mice, which exhibit depressed numbers but normal ratios of each immature peripheral B cell subset and severely reduced numbers of mature B cells. Together, these data provide evidence for multiple selection points among immature peripheral B cells, suggesting that the B cell repertoire is shaped by multiple unique selection events that occur within the immature/transitional peripheral B cell pool.

Journal ArticleDOI
TL;DR: It is reported that TGF-β can induce certain CD4+ T cells in the naive (CD45RA+RO−) fraction in human peripheral blood to develop powerful, contact-dependent suppressive activity that is not antagonized by anti-TGF- β or anti-IL-10 mAbs.
Abstract: An elusive goal in transplanting organs across histocompatibility barriers has been the induction of specific tolerance to avoid graft rejection. A considerable body of evidence exists that the thymus produces regulatory T cells that suppress the response of other T cells to antigenic stimulation. We report that TGF-beta can induce certain CD4+ T cells in the naive (CD45RA+RO-) fraction in human peripheral blood to develop powerful, contact-dependent suppressive activity that is not antagonized by anti-TGF-beta or anti-IL-10 mAbs. The costimulatory effects of TGF-beta on naive CD4+ T cells up-regulated CD25 and CTLA-4 expression, increased their transition to the activated phenotype, but decreased activation-induced apoptosis. Suppressive activity was concentrated in the CD25+ fraction. These CD4+CD25+ regulatory cells prevented CD8+ T cells from proliferating in response to alloantigens and from becoming cytotoxic effector cells. Moreover, these regulatory cells exerted their suppressive activities in remarkably low numbers and maintained these effects even after they are expanded. Once activated, their suppressive properties were Ag nonspecific. Although <1% of naive CD4+ T cells expressed CD25, depletion of this subset before priming with TGF-beta markedly decreased the generation of suppressive activity. This finding suggests that CD4+CD25+ regulatory T cells induced ex vivo are the progeny of thymus-derived regulatory T cells bearing a similar phenotype. The adoptive transfer of these regulatory T cells generated and expanded ex vivo has the potential to prevent rejection of allogeneic organ grafts.

Journal ArticleDOI
TL;DR: Differentiation of Gr-1+ cells in the presence of growth factors and all-trans retinoic acid completely eliminated inhibitory potential of these cells, which may suggest a new approach to cancer treatment.
Abstract: The mechanism of tumor-associated T cell dysfunction remains an unresolved problem of tumor immunology. Development of T cell defects in tumor-bearing hosts are often associated with increased production of immature myeloid cells. In tumor-bearing mice, these immature myeloid cells are represented by a population of Gr-1+ cells. In this study we investigated an effect of these cells on T cell function. Gr-1+ cells were isolated from MethA sarcoma or C3 tumor-bearing mice using cell sorting. These Gr-1+ cells expressed myeloid cell marker CD11b and MHC class I molecules, but they lacked expression of MHC class II molecules. Tumor-induced Gr-1+ cells did not affect T cell responses to Con A and to a peptide presented by MHC class II. In sharp contrast, Gr-1+ cells completely blocked T cell response to a peptide presented by MHC class I in vitro and in vivo. Block of the specific MHC class I molecules on the surface of Gr-1+ cells completely abrogated the observed effects of these cells. Thus, immature myeloid cells specifically inhibited CD8-mediated Ag-specific T cell response, but not CD4-mediated T cell response. Differentiation of Gr-1+ cells in the presence of growth factors and all-trans retinoic acid completely eliminated inhibitory potential of these cells. This may suggest a new approach to cancer treatment.

Journal ArticleDOI
TL;DR: The chemical cross-linking study reveals the direct binding of IL-21 to the γc, and clearly demonstrates that theγc is an indispensable subunit of the functional IL- 21R complex.
Abstract: The common γ-chain (γc) is an indispensable subunit of the functional receptor complexes for IL-4, IL-7, IL-9, and IL-15 as well as IL-2. Here we show that the γc is also shared with the IL-21R complex. Although IL-21 binds to the IL-21R expressed on γc-deficient ED40515− cells, IL-21 is unable to transduce any intracytoplasmic signals. However, in EDγ-16 cells, a γc-transfected ED40515− cell line, IL-21 binds to the IL-21R and can activate Janus kinase (JAK)1, JAK3, STAT1, and STAT3. The chemical cross-linking study reveals the direct binding of IL-21 to the γc. These data clearly demonstrate that the γc is an indispensable subunit of the functional IL-21R complex.