scispace - formally typeset
Search or ask a question

Showing papers in "Molecular therapy. Methods & clinical development in 2020"


Journal ArticleDOI
TL;DR: The results suggest that the observed difference in COVID-19 severity between children and adults could, in part, be attributed to the difference in ACE2 and TMPRSS2 airways tissue expression levels.
Abstract: It has been reported that angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) are the main cell entry proteins for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and play a critical role in causing coronavirus disease 2019 (COVID-19). To investigate the expression level of these SARS-CoV-2 host cell entry genes in the lung airway, we used public gene expression datasets. We have found a differential expression of ACE2 and TMPRSS2 in nasal and bronchial airways relative to age and diseases status. Children were found to have significantly lower expression of COVID-19 receptors in the upper and lower airways (nasal and bronchial). Moreover, the lung airway expression of both ACE2 and TMPRSS2 was found to be significantly upregulated in smokers compared with non-smokers, and in patients with chronic obstructive pulmonary disease (COPD) compared with healthy subjects. No difference was observed in the blood expression levels of ACE2 and TMPRSS2 between children and adults, or in COPD or diabetic patients. However, a significant increase in blood expression levels of these genes was observed in patients with essential hypertension, whereas only ACE2 was upregulated in the blood of asthmatics. These results suggest that the observed difference in COVID-19 severity between children and adults could, in part, be attributed to the difference in ACE2 and TMPRSS2 airways tissue expression levels.

214 citations


Journal ArticleDOI
TL;DR: The dynamic interaction between OVs and the triggered responses of the immune system are discussed, and the anti-OV immunological events that lead to viral clearance and the strategies to deal with such potential loss of the therapeutic virus are discussed.
Abstract: Oncolytic viruses (OVs) constitute a new and promising immunotherapeutic approach toward cancer treatment. This therapy takes advantage of the natural propensity of most tumor cells to be infected by specific OVs. Besides the direct killing potential (oncolysis), what makes OV administration attractive for the present cancer immunotherapeutic scenario is the capacity to induce two new overlapping, but distinct, immunities: anti-tumoral and anti-viral. OV infection and oncolysis naturally elicit both innate and adaptive immune responses (required for long-term anti-tumoral immunity); at the same time, the viral infection prompts an anti-viral response. In this review, we discuss the dynamic interaction between OVs and the triggered responses of the immune system. The anti-OV immunological events that lead to viral clearance and the strategies to deal with such potential loss of the therapeutic virus are discussed. Additionally, we review the immune stimulatory actions induced by OVs through different inherent strategies, such as modulation of the tumor microenvironment, the role of immunogenic cell death, and the consequences of genetically modifying OVs by arming them with therapeutic transgenes. An understanding of the balance between the OV-induced anti-tumoral versus anti-viral immunities will provide insight when choosing the appropriate virotherapy for any specific cancer.

143 citations


Journal ArticleDOI
TL;DR: The two opposing roles that ACE2 genetic variants might be playing in COVID-19 disease are explored by reducing ACE2 receptor effectiveness and mitigating SARS-CoV-2 infectivity.
Abstract: The mechanism for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection requires the binding of the virus to the angiotensin-converting enzyme 2 (ACE2) receptor, well-known for its role in counteracting ACE ACE2 is involved in modulating blood pressure and establishing blood pressure homeostasis Recently, a critical debatable question has arisen whether using antihypertensive medications will have a favorable impact on people infected with SARS-CoV-2 or a deleterious one, mainly because angiotensin-converting enzyme inhibitor (ACEI) and angiotensin-receptor blocker (ARB) therapy can modulate the expression of ACE2 protein The concern is that the use of ACEIs and ARBs will increase the expression of ACE2 and increase patient susceptibility to viral host cell entry and propagation On the other hand, several genetic association studies have examined the relationship between ACE2 genetic variants and the risk of developing hypertension in different ethnic populations In this review, we discuss the ongoing arguments in the literature about ACE2's role in mortality rate among coronavirus disease 2019 (COVID-19) patients comorbid with hypertension and critically evaluate the current debate about the usage or discontinuation of ACEI/ARB antihypertensive drugs Moreover, we explore the two opposing roles that ACE2 genetic variants might be playing in COVID-19 by reducing ACE2 receptor effectiveness and mitigating SARS-CoV-2 infectivity

98 citations


Journal ArticleDOI
Chunyan Liu1, Ligang Zhang1, Wenhui Zhu1, Raoqing Guo1, Huamin Sun1, Xi Chen1, Ning Deng1 
TL;DR: The impacts of particle size, membrane charge density, and surface modification on the fate of CLs in vivo, which may provide guidance for their preclinical studies are discussed.
Abstract: Cationic liposomes (CLs) have been regarded as the most promising gene delivery vectors for decades with the advantages of excellent biodegradability, biocompatibility, and high nucleic acid encapsulation efficiency. However, the clinical use of CLs in cancer gene therapy is limited because of many uncertain factors in vivo. Extracellular barriers such as opsonization, rapid clearance by the reticuloendothelial system and poor tumor penetration, and intracellular barriers, including endosomal/lysosomal entrapped network and restricted diffusion to the nucleus, make CLs not the ideal vector for transferring extrinsic genes in the body. However, the obstacles in achieving productive therapeutic effects of nucleic acids can be addressed by tailoring the properties of CLs, which are influenced by lipid compositions and surface modification. This review focuses on the physiological barriers of CLs against cancer gene therapy and the effects of lipid compositions on governing transfection efficiency, and it briefly discusses the impacts of particle size, membrane charge density, and surface modification on the fate of CLs in vivo, which may provide guidance for their preclinical studies.

87 citations


Journal ArticleDOI
TL;DR: Through continuous evaluation and improvements based on experience during global trials, a consistent and robust commercial manufacturing process for tisagenlecleucel has been developed, leading to improvements in manufacturing success when compared to the initial processes.
Abstract: Tisagenlecleucel is a CD19-specific chimeric antigen receptor (CAR)-T cell therapy approved for patients aged ≤25 years with relapsed or refractory B cell precursor acute lymphoblastic leukemia (B-ALL) and adults with relapsed or refractory diffuse large B cell lymphoma (DLBCL). The initial tisagenlecleucel manufacturing process technology was developed at an academic center and was subsequently transferred, optimized, validated, and scaled out to supply large global trials before commercialization. Tisagenlecleucel manufactured in two centralized facilities has been successfully used in global multicenter trials for B-ALL and DLBCL (>50 clinical centers in 12 countries). In this paper, we describe some of the continuous process improvements made to tisagenlecleucel manufacturing over time to meet global demand while maintaining and improving product quality. During early tisagenlecleucel clinical trials, process enhancements were made to address logistical challenges related to manufacturing for multicenter trials and to accommodate the variability observed in patient starting cellular material. These enhancements resulted in improvements in manufacturing capacity, process robustness, manufacturing success rates, and product quality, and reductions in throughput time. In summary, through continuous evaluation and improvements based on experience during global trials, a consistent and robust commercial manufacturing process for tisagenlecleucel has been developed, leading to improvements in manufacturing success when compared to the initial processes.

79 citations


Journal ArticleDOI
TL;DR: An overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)- CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nuclease (ZFNs) is presented and the underlying mechanisms are discussed.
Abstract: We present an overview of clinical trials involving gene editing using clustered interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9), transcription activator-like effector nucleases (TALENs), or zinc finger nucleases (ZFNs) and discuss the underlying mechanisms In cancer immunotherapy, gene editing is applied ex vivo in T cells, transgenic T cell receptor (tTCR)-T cells, or chimeric antigen receptor (CAR)-T cells to improve adoptive cell therapy for multiple cancer types This involves knockouts of immune checkpoint regulators such as PD-1, components of the endogenous TCR and histocompatibility leukocyte antigen (HLA) complex to generate universal allogeneic CAR-T cells, and CD7 to prevent self-destruction in adoptive cell therapy In cervix carcinoma caused by human papillomavirus (HPV), E6 and E7 genes are disrupted using topically applied gene editing machinery In HIV infection, the CCR5 co-receptor is disrupted ex vivo to generate HIV-resistant T cells, CAR-T cells, or hematopoietic stem cells In β-thalassemia and sickle cell disease, hematopoietic stem cells are engineered ex vivo to induce the production of fetal hemoglobin AAV-mediated in vivo gene editing is applied to exploit the liver for systemic production of therapeutic proteins in hemophilia and mucopolysaccharidoses, and in the eye to restore splicing of the CEP920 gene in Leber’s congenital amaurosis Close consideration of safety aspects and education of stakeholders will be essential for a successful implementation of gene editing technology in the clinic

64 citations


Journal ArticleDOI
TL;DR: The decoupling of local and systemic immune responses reveals important insights into the immunological consequences of AAV delivery to different ocular compartments surrounding the blood-retinal barrier.
Abstract: Retinal gene therapy using adeno-associated viruses (AAVs) is constrained by the mode of viral vector delivery. Intravitreal AAV injections are impeded by the internal limiting membrane barrier, while subretinal injections require invasive surgery and produce a limited region of therapeutic effect. In this study, we introduce a novel mode of ocular gene delivery in rhesus macaques using transscleral microneedles to inject AAV8 into the subretinal or suprachoroidal space, a potential space between the choroid and scleral wall of the eye. Using in vivo imaging, we found that suprachoroidal AAV8 produces diffuse, peripheral expression in retinal pigment epithelial (RPE) cells, but it elicited local infiltration of inflammatory cells. Transscleral subretinal injection of AAV8 using microneedles leads to focal gene expression with transduction of RPE and photoreceptors, and minimal intraocular inflammation. In comparison, intravitreal AAV8 shows minimal transduction of retinal cells, but elicits greater systemic humoral immune responses. Our study introduces a novel mode of transscleral viral delivery that can be performed without vitreoretinal surgery, with focal or diffuse transgene expression patterns suitable for different applications. The decoupling of local and systemic immune responses reveals important insights into the immunological consequences of AAV delivery to different ocular compartments surrounding the blood-retinal barrier.

62 citations


Journal ArticleDOI
TL;DR: EPICCURE combines high-efficiency delivery with quantitative targeting and follow-up for robust assessment of the safety and exploratory efficacy of VEGF-A mRNA angiogenesis.
Abstract: Therapeutic angiogenesis may improve outcomes in patients with coronary artery disease undergoing surgical revascularization. Angiogenic factors may promote blood vessel growth and regenerate regions of ischemic but viable myocardium. Previous clinical trials of vascular endothelial growth factor A (VEGF-A) gene therapy with DNA or viral vectors demonstrated safety but not efficacy. AZD8601 is VEGF-A165 mRNA formulated in biocompatible citrate-buffered saline and optimized for high-efficiency VEGF-A expression with minimal innate immune response. EPICCURE is an ongoing randomized, double-blind, placebo-controlled study of the safety of AZD8601 in patients with moderately decreased left ventricular function (ejection fraction 30%–50%) undergoing elective coronary artery bypass surgery. AZD8601 3 mg, 30 mg, or placebo is administered as 30 epicardial injections in a 10-min extension of cardioplegia. Injections are targeted to ischemic but viable myocardial regions in each patient using quantitative 15O-water positron emission tomography (PET) imaging (stress myocardial blood flow 0.6 mL/g/min). Improvement in regional and global myocardial blood flow quantified with 15O-water PET is an exploratory efficacy outcome, together with echocardiographic, clinical, functional, and biomarker measures. EPICCURE combines high-efficiency delivery with quantitative targeting and follow-up for robust assessment of the safety and exploratory efficacy of VEGF-A mRNA angiogenesis (ClinicalTrials.gov: NCT03370887 ).

62 citations


Journal ArticleDOI
TL;DR: Differences in vector performance may have clinical implications for rAAV receptor binding, trafficking, expression kinetics, expression durability, vector immunogenicity, as well as cost considerations.
Abstract: Different approaches are used in the production of recombinant adeno-associated virus (rAAV). The two leading approaches are transiently transfected human HEK293 cells and live baculovirus infection of Spodoptera frugiperda (Sf9) insect cells. Unexplained differences in vector performance have been seen clinically and preclinically. Thus, we performed a controlled comparative production analysis varying only the host cell species but maintaining all other parameters. We characterized differences with multiple analytical approaches: proteomic profiling by mass spectrometry, isoelectric focusing, cryo-EM (transmission electron cryomicroscopy), denaturation assays, genomic and epigenomic sequencing of packaged genomes, human cytokine profiling, and functional transduction assessments in vitro and in vivo, including in humanized liver mice. Using these approaches, we have made two major discoveries: (1) rAAV capsids have post-translational modifications (PTMs), including glycosylation, acetylation, phosphorylation, and methylation, and these differ between platforms; and (2) rAAV genomes are methylated during production, and these are also differentially deposited between platforms. Our data show that host cell protein impurities differ between platforms and can have their own PTMs, including potentially immunogenic N-linked glycans. Human-produced rAAVs are more potent than baculovirus-Sf9 vectors in various cell types in vitro (p

61 citations


Journal ArticleDOI
TL;DR: The utility of AAVs in mapping neurocircuits, manipulating neuronal function and gene expression, and activity labeling in preclinical research studies as well as AAV-based gene therapies for diseases of the nervous system are reviewed.
Abstract: Adeno-associated viral vectors (AAVs) are increasingly useful preclinical tools in neuroscience research studies for interrogating cellular and neurocircuit functions and mapping brain connectivity. Clinically, AAVs are showing increasing promise as viable candidates for treating multiple neurological diseases. Here, we briefly review the utility of AAVs in mapping neurocircuits, manipulating neuronal function and gene expression, and activity labeling in preclinical research studies as well as AAV-based gene therapies for diseases of the nervous system. This review highlights the vast potential that AAVs have for transformative research and therapeutics in the neurosciences.

58 citations


Journal ArticleDOI
TL;DR: The promising circRNAs being disease biomarkers are reviewed, focused on their regulatory function by acting as miRNA sponges, and their roles in cancer, cardiovascular or neurodegenerative diseases, osteoarthritis, rheumatoid arthritis, diabetes, and other human aging-related diseases are described.
Abstract: Circular RNAs (circRNAs) are a new class of noncoding single-stranded RNAs that differ from linear microRNAs (miRNAs), since they form covalently closed loop structures without free 3' poly(A) tails or 5' caps. circRNAs are the competitive endogenous RNAs (ceRNAs) by binding to miRNA through miRNA response elements (MREs) (i.e., "miRNA sponge"), thereby reducing the quantity of miRNA available to target mRNA, subsequently promoting mRNA stability or protein expression, which involves the initiation and progress of human diseases. Owing to these features of abundance, stability, conservative property, and tissue and stage specificity, widely distributing in the extracellular space and in various bodily fluids, circRNAs can be considered as potential biomarkers for various diseases. Here, we reviewed the promising circRNAs being disease biomarkers, focused on their regulatory function by acting as miRNA sponges, and described their roles in cancer, cardiovascular or neurodegenerative diseases, osteoarthritis, rheumatoid arthritis, diabetes, and other human aging-related diseases, which provide a new direction for pathogenesis, diagnosis, and treatment of human aging-related diseases.

Journal ArticleDOI
TL;DR: In this paper, enhanced specificity Cas9 of Streptococcus pyogenes (eSpCas9) was used to successfully achieve seamless correction of the two most prevalent USH2A mutations in induced pluripotent stem cells (iPSCs) of patients with USH or arRP.
Abstract: Inherited retinal dystrophies (IRDs) are characterized by progressive photoreceptor degeneration and vision loss. Usher syndrome (USH) is a syndromic IRD characterized by retinitis pigmentosa (RP) and hearing loss. USH is clinically and genetically heterogeneous, and the most prevalent causative gene is USH2A. USH2A mutations also account for a large number of isolated autosomal recessive RP (arRP) cases. This high prevalence is due to two recurrent USH2A mutations, c.2276G>T and c.2299delG. Due to the large size of the USH2A cDNA, gene augmentation therapy is inaccessible. However, CRISPR/Cas9-mediated genome editing is a viable alternative. We used enhanced specificity Cas9 of Streptococcus pyogenes (eSpCas9) to successfully achieve seamless correction of the two most prevalent USH2A mutations in induced pluripotent stem cells (iPSCs) of patients with USH or arRP. Our results highlight features that promote high target efficacy and specificity of eSpCas9. Consistently, we did not identify any off-target mutagenesis in the corrected iPSCs, which also retained pluripotency and genetic stability. Furthermore, analysis of USH2A expression unexpectedly identified aberrant mRNA levels associated with the c.2276G>T and c.2299delG mutations that were reverted following correction. Taken together, our efficient CRISPR/Cas9-mediated strategy for USH2A mutation correction brings hope for a potential treatment for USH and arRP patients.

Journal ArticleDOI
TL;DR: This work reveals that CRISPR/Cas9 gene editing is a promising tool for permanent PKU gene editing and allows for lifelong, permanent correction of the Pahenu2 allele in a portion of treated hepatocytes of mice with PKU.
Abstract: Phenylketonuria (PKU) due to recessively inherited phenylalanine hydroxylase (PAH) deficiency results in hyperphenylalaninemia, which is toxic to the central nervous system. Restriction of dietary phenylalanine intake remains the standard of PKU care and prevents the major neurologic manifestations of the disease, yet shortcomings of dietary therapy remain, including poor adherence to a difficult and unpalatable diet, an increased incidence of neuropsychiatric illness, and imperfect neurocognitive outcomes. Gene therapy for PKU is a promising novel approach to promote lifelong neurological protection while allowing unrestricted dietary phenylalanine intake. In this study, liver-tropic recombinant AAV2/8 vectors were used to deliver CRISPR/Cas9 machinery and facilitate correction of the Pahenu2 allele by homologous recombination. Additionally, a non-homologous end joining (NHEJ) inhibitor, vanillin, was co-administered with the viral drug to promote homology-directed repair (HDR) with the AAV-provided repair template. This combinatorial drug administration allowed for lifelong, permanent correction of the Pahenu2 allele in a portion of treated hepatocytes of mice with PKU, yielding partial restoration of liver PAH activity, substantial reduction of blood phenylalanine, and prevention of maternal PKU effects during breeding. This work reveals that CRISPR/Cas9 gene editing is a promising tool for permanent PKU gene editing.

Journal ArticleDOI
TL;DR: Compared the efficacy of single-stranded AAV-PHP.eB and AAV9 in targeting mouse CNS and peripheral tissues after administration via various routes, in two different mouse strains, and after packaging a self-complementary genome are compared.
Abstract: Adeno-associated viral (AAV) vectors are attractive tools for central nervous system (CNS) gene therapy because some vectors can cross the blood-brain barrier (BBB), allowing them to be used as minimally invasive treatments. A novel AAV vector recently evolved in vivo, AAV-PHP.eB, has been reported to cross the BBB more effectively than the existing gold standard AAV9, but not under all conditions. Here, we compared the efficacy of single-stranded AAV-PHP.eB and AAV9 in targeting mouse CNS and peripheral tissues after administration via various routes, in two different mouse strains (C57BL/6J and B6C3), and after packaging AAV-PHP.eB with a self-complementary genome. We found that AAV-PHP.eB produced higher CNS transduction than AAV9 after intravenous injection, but only in C57BL/6J and not in B6C3 mice. AAV-PHP.eB and AAV9 produced similar CNS transduction when the administration route did not require the vectors to cross the BBB. Packaging AAV-PHP.eB with a self-complementary genome increased overall CNS transduction, but at the expense of strong neuronal tropism. AAV-PHP.eB resulted in less transduction of liver tissue than AAV9 under all conditions. Taken together, these results suggest the potential for AAV-PHP.eB as a vector for CNS gene therapy applications, but consideration will be required for translation beyond mouse models.

Journal ArticleDOI
TL;DR: A nanostructured lipid carrier is described for delivery of an alphavirus replicon encoding a previously described highly neutralizing human mAb, ZIKV-117, to enable intramuscular administration of mRNA-encoded mAbs when given by IM administration as pre-ex exposure prophylaxis or post-exposure therapy.
Abstract: Monoclonal antibody (mAb) therapeutics are an effective modality for the treatment of infectious, autoimmune, and cancer-related diseases However, the discovery, development, and manufacturing processes are complex, resource-consuming activities that preclude the rapid deployment of mAbs in outbreaks of emerging infectious diseases Given recent advances in nucleic acid delivery technology, it is now possible to deliver exogenous mRNA encoding mAbs for in situ expression following intravenous (iv) infusion of lipid nanoparticle-encapsulated mRNA However, the requirement for iv administration limits the application to settings where infusion is an option, increasing the cost of treatment As an alternative strategy, and to enable intramuscular (IM) administration of mRNA-encoded mAbs, we describe a nanostructured lipid carrier for delivery of an alphavirus replicon encoding a previously described highly neutralizing human mAb, ZIKV-117 Using a lethal Zika virus challenge model in mice, our studies show robust protection following alphavirus-driven expression of ZIKV-117 mRNA when given by IM administration as pre-exposure prophylaxis or post-exposure therapy

Journal ArticleDOI
TL;DR: The latest research in the immunological properties of MSCs are summarized, their use as immunomodulatory/anti-inflammatory agents, methods for licensing M SCs to customize their immunological profile, and theirUse as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells is summarized.
Abstract: Mesenchymal stromal cells (MSCs) possess several fairly unique properties that, when combined, make them ideally suited for cellular-based immunotherapy and as vehicles for gene and drug delivery for a wide range of diseases and disorders. Key among these are: (1) their relative ease of isolation from a variety of tissues; (2) the ability to be expanded in culture without a loss of functionality, a property that varies to some degree with tissue source; (3) they are relatively immune-inert, perhaps obviating the need for precise donor/recipient matching; (4) they possess potent immunomodulatory functions that can be tailored by so-called licensing in vitro and in vivo; (5) the efficiency with which they can be modified with viral-based vectors; and (6) their almost uncanny ability to selectively home to damaged tissues, tumors, and metastases following systemic administration. In this review, we summarize the latest research in the immunological properties of MSCs, their use as immunomodulatory/anti-inflammatory agents, methods for licensing MSCs to customize their immunological profile, and their use as vehicles for transferring both therapeutic genes in genetic disease and drugs and genes designed to destroy tumor cells.

Journal ArticleDOI
TL;DR: Overall, the SJ293TS cell line enables high-titer vector production in serum-free conditions while reducing the amount of input DNA required, resulting in a highly efficient manufacturing option.
Abstract: Lentiviral vectors are increasingly utilized in cell and gene therapy applications because they efficiently transduce target cells such as hematopoietic stem cells and T cells. Large-scale production of current Good Manufacturing Practices-grade lentiviral vectors is limited because of the adherent, serum-dependent nature of HEK293T cells used in the manufacturing process. To optimize large-scale clinical-grade lentiviral vector production, we developed an improved production scheme by adapting HEK293T cells to grow in suspension using commercially available and chemically defined serum-free media. Lentiviral vectors with titers equivalent to those of HEK293T cells were produced from SJ293TS cells using optimized transfection conditions that reduced the required amount of plasmid DNA by 50%. Furthermore, purification of SJ293TS-derived lentiviral vectors at 1 L yielded a recovery of 55% ± 14% (n = 138) of transducing units in the starting material, more than a 2-fold increase over historical yields from adherent HEK293T serum-dependent lentiviral vector preparations. SJ293TS cells were stable to produce lentiviral vectors over 4 months of continuous culture. SJ293TS-derived lentiviral vectors efficiently transduced primary hematopoietic stem cells and T cells from healthy donors. Overall, our SJ293TS cell line enables high-titer vector production in serum-free conditions while reducing the amount of input DNA required, resulting in a highly efficient manufacturing option.

Journal ArticleDOI
TL;DR: A comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vector that can circumvent immunity.
Abstract: Early preclinical studies in rodents and other species did not reveal that vector or transgene immunity would present a significant hurdle for sustained gene expression. While there was early evidence of mild immune responses to adeno-associated virus (AAV) in preclinical studies, it was generally believed that these responses were too weak and transient to negatively impact sustained transduction. However, translation of the cumulative success in treating hemophilia B in rodents and dogs with an AAV2-F9 vector to human studies was not as successful. Despite significant progress in recent clinical trials for hemophilia, new immunotoxicities to AAV and transgene are emerging in humans that require better animal models to assess and overcome these responses. The animal models designed to address these immune complications have provided critical information to assess how vector dose, vector capsid processing, vector genome, difference in serotypes, and variations in vector delivery route can impact immunity and to develop approaches for overcoming pre-existing immunity. Additionally, a comprehensive dissection of innate, adaptive, and regulatory responses to AAV vectors in preclinical studies has provided a framework that can be utilized for development of immunomodulatory therapies to overcome or bypass immune responses and for developing strategic approaches toward engineering stealth AAV vectors that can circumvent immunity.

Journal ArticleDOI
TL;DR: The addition of an Alt-R electroporation enhancer (EE), a short, single-stranded oligodeoxynucleotide (ssODN), significantly increased editing efficiency in CD34+ HSPCs and it was demonstrated that sgRNA may be preferable over 2-part gRNA in a locus-specific manner.
Abstract: Genome editing of human cluster of differentiation 34+ (CD34+) hematopoietic stem and progenitor cells (HSPCs) holds great therapeutic potential. This study aimed to optimize on-target, ex vivo genome editing using the CRISPR-Cas9 system in CD34+ HSPCs and to create a clear workflow for precise identification of off-target effects. Modified synthetic guide RNAs (gRNAs), either 2-part gRNA or single-guide RNA (sgRNA), were delivered to CD34+ HSPCs as part of ribonucleoprotein (RNP) complexes, targeting therapeutically relevant genes. The addition of an Alt-R electroporation enhancer (EE), a short, single-stranded oligodeoxynucleotide (ssODN), significantly increased editing efficiency in CD34+ HSPCs. Notably, similar editing improvement was observed when excess gRNA over Cas9 protein was used, providing a DNA-free alternative suitable for therapeutic applications. Furthermore, we demonstrated that sgRNA may be preferable over 2-part gRNA in a locus-specific manner. Finally, we present a clear experimental framework suitable for the unbiased identification of bona fide off-target sites by Genome-Wide, Unbiased Identification of Double-Strand Breaks (DSBs) Enabled by Sequencing (GUIDE-seq), as well as subsequent editing quantification in CD34+ HSPCs using rhAmpSeq. These findings may facilitate the implementation of genome editing in CD34+ HSPCs for research and therapy and can be adapted for other hematopoietic cells.

Journal ArticleDOI
TL;DR: It is demonstrated that this method can selectively deplete anti-AAV antibodies by hemapheresis combined with AAV9 particles coupled to Sepharose beads and can be readily adapted for the use in clinical AAV gene therapy.
Abstract: Gene therapy with adeno-associated virus (AAV)-based vectors shows great promise for the gene therapeutic treatment of a broad array of diseases. In fact, the treatment of genetic diseases with AAV vectors is currently the only in vivo gene therapy approach that is approved by the US Food and Drug Administration (FDA). Unfortunately, pre-existing antibodies against AAV severely limit the patient population that can potentially benefit from AAV gene therapy, especially if the vector is delivered by intravenous injection. Here, we demonstrate that we can selectively deplete anti-AAV antibodies by hemapheresis combined with AAV9 particles coupled to Sepharose beads. In rats that underwent hemapheresis and immunoadsorption, luciferase expression was dramatically increased in the hearts and fully restored in the livers of these rats. Importantly, our method can be readily adapted for the use in clinical AAV gene therapy.

Journal ArticleDOI
TL;DR: A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.
Abstract: rQNestin34.5v.2 is an oncolytic herpes simplex virus 1 (oHSV) that retains expression of the neurovirulent ICP34.5 gene under glioma-selective transcriptional regulation. To prepare an investigational new drug (IND) application, we performed toxicology and efficacy studies of rQNestin34.5v.2 in mice in the presence or absence of the immunomodulating drug cyclophosphamide (CPA). ICP34.5 allows HSV1 to survive interferon and improves viral replication by dephosphorylation of the eIF-2α translation factor. rQNestin34.5v.2 dephosphorylated eIF-2α in human glioma cells, but not in human normal cells, resulting in significantly higher cytotoxicity and viral replication in the former compared to the latter. In vivo toxicity of rQNestin34.5v.2 was compared with that of wild-type F strain in immunocompetent BALB/c mice and athymic mice by multiple routes of administration in the presence or absence of CPA. A likely no observed adverse effect level (NOAEL) dose for intracranial rQNestin34.5v.2 was estimated, justifying a phase 1 clinical trial in recurrent glioma patients (ClinicalTrials.gov: NCT03152318), after successful submission of an IND.

Journal ArticleDOI
TL;DR: A novel dPCR assay for the sensitive detection of transgenic CAR-T cells, which should be very useful in the context of Axi-cel treatment is established.
Abstract: Treatment with axicabtagene ciloleucel (Axi-cel) CD19-CAR-T (chimeric antigen receptor T) cells has been approved for refractory/relapsed diffuse large B cell lymphoma (DLBCL) and primary mediastinal large B cell lymphoma (PMBCL). Because treatment success as well as side effects might depend on CAR-T cell expansion in vivo, we aimed at developing digital PCR (dPCR) assays for detection and quantification of CAR-T cells. To this end, we cloned and sequenced the complete cDNA of the CAR construct. We designed different combinations of primers and dual-labeled hydrolysis probes located in various CAR regions. Three combinations were successfully tested on CAR-positive and -negative cells in duplex reactions with a reference gene (REF) to concomitantly assess cell numbers. All assays demonstrated excellent specificity and reproducibility with neglectable inter-assay variations. For all three assays, almost perfect correlation between the two dPCRs (Axi-cel versus REF) was observed, and the limit of detection was one single CAR-transduced cell corresponding to a sensitivity of 0.01% for 100 ng genomic DNA. After cross-validation, we used one assay to monitor Axi-cel CAR-T numbers in patients. CAR-T expansion and contraction followed the expected kinetics with median peak value of 11.2 Axi-cel CAR-T cells/μL at 11.3 days (median). Clinically, we observed only two partial responses (PRs) in the five patients with CAR-T cell peak numbers below median, whereas four of the five patients with comparatively good expansion showed clinical responses (two complete responses [CRs] and two PRs) on day 30. In conclusion, we established a novel dPCR assay for the sensitive detection of transgenic CAR-T cells, which should be very useful in the context of Axi-cel treatment.

Journal ArticleDOI
TL;DR: It is found that AAV9 efficiently targets respiratory and skeletal muscles after injection into the cerebrospinal fluid (CSF), which represents an outstanding new property that can be useful for the treatment of diseases affecting both the central nervous system and muscle.
Abstract: The identification of the most efficient method for whole central nervous system targeting that is translatable to humans and the safest route of adeno-associated virus (AAV) administration is a major concern for future applications in clinics. Additionally, as many AAV serotypes were identified for gene introduction into the brain and the spinal cord, another key to human gene-therapy success is to determine the most efficient serotype. In this study, we compared lumbar intrathecal administration through catheter implantation and intracerebroventricular administration in the cynomolgus macaque. We also evaluated and compared two AAV serotypes that are currently used in clinical trials: AAV9 and AAVrh10. We demonstrated that AAV9 lumbar intrathecal delivery using a catheter achieved consistent transgene expression in the motor neurons of the spinal cord and in the neurons/glial cells of several brain regions, whereas AAV9 intracerebroventricular delivery led to a consistent transgene expression in the brain. In contrast, AAVrh10 lumbar intrathecal delivery led to rare motor neuron targeting. Finally, we found that AAV9 efficiently targets respiratory and skeletal muscles after injection into the cerebrospinal fluid (CSF), which represents an outstanding new property that can be useful for the treatment of diseases affecting both the central nervous system and muscle.

Journal ArticleDOI
TL;DR: In this article, a human B-lymphoblastoid cell-line 721221 (hereinafter, 221)-based artificial feeder cell system with membrane-bound interleukin 21 (mIL-21) was used to propagate NK and CAR-NK cells.
Abstract: Clinical success of chimeric antigen receptor (CAR) T cell immunotherapy requires the engineering of autologous T cells, which limits the broader implementation of CAR cell therapy The development of allogeneic and universal cell products will significantly broaden their application and reduce costs Allogeneic natural killer (NK) cells can be used for universal CAR immunotherapy Here, we develop an alternative approach for the rapid expansion of primary NK and CAR-NK cells with superior expansion capability and in vivo cytotoxicity from various sources (including peripheral blood, cord blood, and tumor tissue) We apply a human B-lymphoblastoid cell-line 721221 (hereinafter, 221)-based artificial feeder cell system with membrane-bound interleukin 21 (mIL-21) to propagate NK and CAR-NK cells The expansion capability, purity, and cytotoxicity of NK cells expanded with 221-mIL-21 feeder cells are superior to that of conventional K562-mIL-21 feeder cells RNA sequencing (RNA-seq) data show that 221-mIL-21 feeder cell-expanded NK cells display a less differentiated, non-exhausted, limited fratricidal, memory-like phenotype correlated with enriched metabolic pathways, which explains underlying mechanisms Thus, "off-the-shelf" NK and CAR-NK cells with superior functionalities and expansion using a genetically modified 221-mIL-21 feeder cell expansion system will greatly support clinical use of NK immunotherapy

Journal ArticleDOI
TL;DR: The seamless restoration of the p.F508del mutation resulted in normal expression of the mature CFTR glycoprotein, full recovery of CFTR activity, and a normal response of the repaired organoids to treatment with two approved CF therapies: VX-770 and Vx-809.
Abstract: Cystic fibrosis (CF) is the main genetic cause of death among the Caucasian population. The disease is characterized by abnormal fluid and electrolyte mobility across secretory epithelia. The first manifestations occur within hours of birth (meconium ileus), later extending to other organs, generally affecting the respiratory tract. It is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR encodes a cyclic adenosine monophosphate (cAMP)-dependent, phosphorylation-regulated chloride channel required for transport of chloride and other ions through cell membranes. There are more than 2,000 mutations described in the CFTR gene, but one of them, phenylalanine residue at amino acid position 508 (p.F508del), a recessive allele, is responsible for the vast majority of CF cases worldwide. Here, we present the results of the application of genome-editing techniques to the restoration of CFTR activity in p.F508del patient-derived induced pluripotent stem cells (iPSCs). Gene-edited iPSCs were subsequently used to produce intestinal organoids on which the physiological activity of the restored gene was tested in forskolin-induced swelling tests. The seamless restoration of the p.F508del mutation resulted in normal expression of the mature CFTR glycoprotein, full recovery of CFTR activity, and a normal response of the repaired organoids to treatment with two approved CF therapies: VX-770 and VX-809.

Journal ArticleDOI
TL;DR: Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver, therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD.
Abstract: We have determined whether orange juice-derived nanovesicles (ONVs) could be used for the treatment of obesity-associated intestinal complications. ONVs were characterized by lipidomic, metabolomic, electron microscopy. In vitro, intestinal barriers (IBs = Caco-2+HT-29-MTX) were treated with ONVs and co-cultured with adipocytes to monitor IB fat release. In vivo, obesity was induced with a high-fat, high-sucrose diet (HFHSD mice) for 12 weeks. Then, half of HFHSD mice were gavaged with ONVs. One-month ONV treatment did not modify HFHSD-induced insulin resistance but reversed diet-induced gut modifications. In the jejunum, ONVs increased villi size, reduced triglyceride content, and modulated mRNA levels of genes involved in immune response (tumor necrosis factor [TNF]-α and interleukin [IL]-1β), barrier permeability (CLDN1, OCLN, ZO1), fat absorption, and chylomicron release. ONVs targeted microsomal triglyceride transfer protein (MTP) and angiopoietin-like protein-4 (ANGPTL4), two therapeutic targets to reduce plasma lipids and inflammation in gastrointestinal diseases. Interestingly, ONV treatment did not aggravate liver steatosis, as MTP mRNA was increased in the liver. Therefore, ONVs protected both intestine and the liver from fat overload associated with the HFHSD. As ONVs concentrated amino acids and bioactive lipids versus orange juice, which are deficient in obese patients, the use of ONVs as a dietary supplement could bring physiological relevant compounds in the jejunum to accelerate the restoration of intestinal functions during weight loss in obese patients.

Journal ArticleDOI
TL;DR: It is demonstrated that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.
Abstract: In this work we provide preclinical data to support initiation of a first-in-human trial for sickle cell disease (SCD) using an approach that relies on reversal of the developmental fetal-to-adult hemoglobin switch. Erythroid-specific knockdown of BCL11A via a lentiviral-encoded microRNA-adapted short hairpin RNA (shRNAmiR) leads to reactivation of the gamma-globin gene while simultaneously reducing expression of the pathogenic adult sickle β-globin. We generated a refined lentiviral vector (LVV) BCH-BB694 that was developed to overcome poor vector titers observed in the manufacturing scale-up of the original research-grade LVV. Healthy or sickle cell donor CD34+ cells transduced with Good Manufacturing Practices (GMP)-grade BCH-BB694 LVV achieved high vector copy numbers (VCNs) >5 and gene marking of >80%, resulting in a 3- to 5-fold induction of fetal hemoglobin (HbF) compared with mock-transduced cells without affecting growth, differentiation, and engraftment of gene-modified cells in vitro or in vivo. In vitro immortalization assays, which are designed to measure vector-mediated genotoxicity, showed no increased immortalization compared with mock-transduced cells. Together these data demonstrate that BCH-BB694 LVV is non-toxic and efficacious in preclinical studies, and can be generated at a clinically relevant scale in a GMP setting at high titer to support clinical testing for the treatment of SCD.

Journal ArticleDOI
TL;DR: A CRISPR-Cas9-based strategy for the targeted prevention of NMD of CFTR transcripts containing the second most common nonsense variant listed in CFTR2, W1282X is designed and significantly increased protein expression of this mutant variant is demonstrated.
Abstract: Nonsense-mediated decay (NMD) is a major pathogenic mechanism underlying a diversity of genetic disorders. Nonsense variants tend to lead to more severe disease phenotypes and are often difficult targets for small molecule therapeutic development as a result of insufficient protein production. The treatment of cystic fibrosis (CF), an autosomal recessive disease caused by mutations in the CFTR gene, exemplifies the challenge of therapeutically addressing nonsense mutations in human disease. Therapeutic development in CF has led to multiple, highly successful protein modulatory interventions, yet no targeted therapies have been approved for nonsense mutations. Here, we have designed a CRISPR-Cas9-based strategy for the targeted prevention of NMD of CFTR transcripts containing the second most common nonsense variant listed in CFTR2, W1282X. By introducing a deletion of the downstream genic region following the premature stop codon, we demonstrate significantly increased protein expression of this mutant variant. Notably, in combination with protein modulators, genome editing significantly increases the potentiated channel activity of W1282X-CFTR in human bronchial epithelial cells. Furthermore, we show how the outlined approach can be modified to permit allele-specific editing. The described approach can be extended to other late-occurring nonsense mutations in the CFTR gene or applied as a generalized approach for gene-specific prevention of NMD in disorders where a truncated protein product retains full or partial functionality.

Journal ArticleDOI
TL;DR: It is confirmed that satellite cells are transduced by AAV and can undergo gene editing to restore the dystrophin reading frame in the mdx mouse and found that muscle-specific promoters can drive transgene expression and gene editing in satellite cells.
Abstract: Delivery of therapeutic transgenes with adeno-associated viral (AAV) vectors for treatment of myopathies has yielded encouraging results in animal models and early clinical studies. Although certain AAV serotypes efficiently target muscle fibers, transduction of the muscle stem cells, also known as satellite cells, is less studied. Here, we used a Pax7nGFP;Ai9 dual reporter mouse to quantify AAV transduction events in satellite cells. We assessed a panel of AAV serotypes for satellite cell tropism in the mdx mouse model of Duchenne muscular dystrophy and observed the highest satellite cell labeling with AAV9 following local or systemic administration. Subsequently, we used AAV9 to interrogate CRISPR/Cas9-mediated gene editing of satellite cells in the Pax7nGFP;mdx mouse. We quantified the level of gene editing using a Tn5 transposon-based method for unbiased sequencing of editing outcomes at the Dmd locus. We also found that muscle-specific promoters can drive transgene expression and gene editing in satellite cells. Lastly, to demonstrate the functionality of satellite cells edited at the Dmd locus by CRISPR in vivo, we performed a transplantation experiment and observed increased dystrophin-positive fibers in the recipient mouse. Collectively, our results confirm that satellite cells are transduced by AAV and can undergo gene editing to restore the dystrophin reading frame in the mdx mouse.

Journal ArticleDOI
TL;DR: The structure and genome features of SARS-CoV-2 are summarized and its infection and replication process is introduced and the clinical symptoms, diagnosis, and treatment options of COVID-19 patients are reviewed.
Abstract: The coronavirus disease 2019 (COVID-19) is a new type of pneumonia caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. COVID-19 is affecting millions of patients, and the infected number keeps increasing. SARS-CoV-2 is highly infectious, has a long incubation period, and causes a relatively high death rate, resulting in severe health problems all over the world. Currently there is no effective proven drug for the treatment of COVID-19; therefore, development of effective therapeutic drugs to suppress SARS-CoV-2 infection is urgently needed. In this review, we first summarize the structure and genome features of SARS-CoV-2 and introduce its infection and replication process. Then, we review the clinical symptoms, diagnosis, and treatment options of COVID-19 patients. We further discuss the potential molecular targets and drug development strategies for treatment of the emerging COVID-19. Finally, we summarize clinical trials of some potential therapeutic drugs and the results of vaccine development. This review provides some insights for the treatment of COVID-19.