scispace - formally typeset
Journal ArticleDOI

A Compact, Low-Power and Low-Jitter Dual-Loop Injection Locked PLL Using All-Digital PVT Calibration

Reads0
Chats0
TLDR
The IL-ADPLL is implemented in a 65 nm CMOS process and measurement results show that it achieves a 0.7ps RMS jitter at 1.2 GHz while having 1.6 mW and 0.97 mW power consumption with and without intermittent operation resulting in an FOM of -243 dB.
Abstract
This paper presents a low-jitter, low-power and a small-area injection-locked all-digital PLL (IL-ADPLL). It consists of a dual-loop and a dual-VCO architecture in which one VCO (Replica) is placed in a TDC-less synthesizable ADFLL to provide continuous tracking of voltage and temperature variations. The other VCO (main) shares the control voltage with the replica VCO but is placed outside the loop and is injection-locked to lower its jitter and accurately set its frequency to the desired one. This approach avoids timing problems in the conventional ILPLL since the injection-locked VCO is placed outside the feedback loop. It also achieves a low power and a small area, due to the absence of a power hungry TDC and an area-consuming loop filter, while tracking any PVT variations. The IL-ADPLL is implemented in a 65 nm CMOS process and measurement results show that it achieves a 0.7ps RMS jitter at 1.2 GHz while having 1.6 mW and 0.97 mW power consumption with and without intermittent operation resulting in an FOM of -243 dB. It also consumes an area of only 0.022 mm2 resulting in the best performance-area trade-off system presented up-to-date.

read more

Citations
More filters
Journal ArticleDOI

A Fully Synthesizable All-Digital PLL With Interpolative Phase Coupled Oscillator, Current-Output DAC, and Fine-Resolution Digital Varactor Using Gated Edge Injection Technique

TL;DR: This paper presents a fully synthesizable phase-locked loop (PLL) based on injection locking, with an interpolative phase-coupled oscillator, a current output digital-to-analog converter (DAC), and a fine resolution digital varactor.
Proceedings Article

A Highly Digital MDLL-Based Clock Multiplier That Leverages a Self-Scrambling Time-to-Digital Converter to Achieve Subpicosecond Jitter Performance

TL;DR: In this article, the authors present a mostly digital multiplying delay-locked loop (MDLL) architecture that leverages a new time-to-digital converter (TDC) and a correlated double-sampling technique to achieve sub-picosecond jitter performance.
Journal ArticleDOI

A 21–48 GHz Subharmonic Injection-Locked Fractional-N Frequency Synthesizer for Multiband Point-to-Point Backhaul Communications

TL;DR: A mm-wave subharmonic injection-locked (SHIL) fractional-N frequency synthesizer for wireless multiband point-to-point backhaul communications and the proposed ILFM chain employs higher-order LC tanks to generate a rippled phase response over a wide frequency range to significantly enhance the locking range and to eliminate expensive mm- wave frequency calibration loops.
Journal ArticleDOI

A PVT-Robust and Low-Jitter Ring-VCO-Based Injection-Locked Clock Multiplier With a Continuous Frequency-Tracking Loop Using a Replica-Delay Cell and a Dual-Edge Phase Detector

TL;DR: A low-jitter, ring-type voltage-controlled oscillator (VCO)-based injection-locked clock multiplier (ILCM) with a continuous frequency-tracking loop (FTL) for process-voltagetemperature (PVT)-calibration is presented.
Journal ArticleDOI

A 1.7 GHz Fractional-N Frequency Synthesizer Based on a Multiplying Delay-Locked Loop

TL;DR: This paper presents the first published multiplying delay-locked loop achieving fine fractional-N frequency resolution, and introduces an automatic cancellation of the phase detector offset, by insertion of a digital-to-time converter in the reference path.
References
More filters
Journal ArticleDOI

A study of injection locking and pulling in oscillators

TL;DR: In this paper, an identity obtained from phase and envelope equations is used to express the requisite oscillator nonlinearity and interpret phase noise reduction, and the behavior of phase-locked oscillators under injection pulling is also formulated.
Journal ArticleDOI

All-digital PLL and transmitter for mobile phones

TL;DR: The first all-digital PLL and polar transmitter for mobile phones is presented, exploiting the new paradigm of a deep-submicron CMOS process environment by leveraging on the fast switching times of MOS transistors, the fine lithography and the precise device matching, while avoiding problems related to the limited voltage headroom.
Journal ArticleDOI

Superharmonic injection-locked frequency dividers

TL;DR: In this article, a first-order differential equation is derived for the noise dynamics of injection-locked oscillators, and a single-ended ILFD is designed in a 0.5-/spl mu/m CMOS technology operating at 1.8 GHz with more than 190 MHz locking range while consuming 3 mW of power.
Journal ArticleDOI

A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider

TL;DR: An injection-locked oscillator topology is presented, based on MOS switches directly coupled to the LC tank of well-known LC oscillators, which features wide locking ranges, a very low input capacitance, and highest frequency capability.
Journal ArticleDOI

A multiple-crystal interface PLL with VCO realignment to reduce phase noise

TL;DR: In this paper, an enhancement to a conventional integer-N phase-locked loop (PLL) is introduced, analyzed, and demonstrated experimentally to significantly reduce voltage-controlled oscillator (VCO) phase noise.
Related Papers (5)