scispace - formally typeset
Proceedings ArticleDOI

A scalable processing-in-memory accelerator for parallel graph processing

TLDR
This work argues that the conventional concept of processing-in-memory (PIM) can be a viable solution to achieve memory-capacity-proportional performance and designs a programmable PIM accelerator for large-scale graph processing called Tesseract.
Abstract
The explosion of digital data and the ever-growing need for fast data analysis have made in-memory big-data processing in computer systems increasingly important. In particular, large-scale graph processing is gaining attention due to its broad applicability from social science to machine learning. However, scalable hardware design that can efficiently process large graphs in main memory is still an open problem. Ideally, cost-effective and scalable graph processing systems can be realized by building a system whose performance increases proportionally with the sizes of graphs that can be stored in the system, which is extremely challenging in conventional systems due to severe memory bandwidth limitations. In this work, we argue that the conventional concept of processing-in-memory (PIM) can be a viable solution to achieve such an objective. The key modern enabler for PIM is the recent advancement of the 3D integration technology that facilitates stacking logic and memory dies in a single package, which was not available when the PIM concept was originally examined. In order to take advantage of such a new technology to enable memory-capacity-proportional performance, we design a programmable PIM accelerator for large-scale graph processing called Tesseract. Tesseract is composed of (1) a new hardware architecture that fully utilizes the available memory bandwidth, (2) an efficient method of communication between different memory partitions, and (3) a programming interface that reflects and exploits the unique hardware design. It also includes two hardware prefetchers specialized for memory access patterns of graph processing, which operate based on the hints provided by our programming model. Our comprehensive evaluations using five state-of-the-art graph processing workloads with large real-world graphs show that the proposed architecture improves average system performance by a factor of ten and achieves 87% average energy reduction over conventional systems.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

PIM-GraphSCC: PIM-Based Graph Processing Using Graph’s Community Structures

TL;DR: PIM-GraphSCC is proposed, the first PIM-based graph processor that exploits a graph’s connectivity to significantly reduce communication over critical resources: the inter-accelerator links, and provides a community-aware graph partitioning scheme that reduces inter-ACcelerator data movement by up to 93 percent compared to modern graph processing schemes.
Posted Content

GARDENIA: A Domain-specific Benchmark Suite for Next-generation Accelerators

TL;DR: This paper presents the Graph Analytics Repository for Designing Next-generation Accelerators (GARDENIA), a benchmark suite for studying irregular algorithms on massively parallel accelerators.

High-Performance I/O Programming Models for Exascale Computing

TL;DR: The success of the exascale supercomputer is largely dependent on novel breakthroughs that overcome the increasing demands for high-performance I/O on HPC.
Proceedings ArticleDOI

GraphVine: exploiting multicast for scalable graph analytics

TL;DR: This paper shows that it is possible to combine multiple messages emitted from a source node into a single multicast message, thus reducing the inter-cube communication without affecting the correctness of the execution, and proposes to add multicast support at source and in-network routers to reduce vertex-update traffic.
Journal ArticleDOI

Computing En-Route for Near-Data Processing

TL;DR: This article proposes Active-Routing, an in-network near-data processing architecture for data-flow execution, which enables computation en-route by exploiting patterns of aggregation over intermediate results and introduces page granular computation offloading to amortize the offloading overhead and improve the throughput.
References
More filters
Journal ArticleDOI

The anatomy of a large-scale hypertextual Web search engine

TL;DR: This paper provides an in-depth description of Google, a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and looks at the problem of how to effectively deal with uncontrolled hypertext collections where anyone can publish anything they want.
Journal Article

The Anatomy of a Large-Scale Hypertextual Web Search Engine.

Sergey Brin, +1 more
- 01 Jan 1998 - 
TL;DR: Google as discussed by the authors is a prototype of a large-scale search engine which makes heavy use of the structure present in hypertext and is designed to crawl and index the Web efficiently and produce much more satisfying search results than existing systems.
Journal ArticleDOI

A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs

TL;DR: This work presents a new coarsening heuristic (called heavy-edge heuristic) for which the size of the partition of the coarse graph is within a small factor of theSize of the final partition obtained after multilevel refinement, and presents a much faster variation of the Kernighan--Lin (KL) algorithm for refining during uncoarsening.
Journal ArticleDOI

Pin: building customized program analysis tools with dynamic instrumentation

TL;DR: The goals are to provide easy-to-use, portable, transparent, and efficient instrumentation, and to illustrate Pin's versatility, two Pintools in daily use to analyze production software are described.
Proceedings ArticleDOI

Pregel: a system for large-scale graph processing

TL;DR: A model for processing large graphs that has been designed for efficient, scalable and fault-tolerant implementation on clusters of thousands of commodity computers, and its implied synchronicity makes reasoning about programs easier.
Related Papers (5)