scispace - formally typeset
Open AccessJournal ArticleDOI

Adjuvanting a subunit COVID-19 vaccine to induce protective immunity.

TLDR
In this article, the authors demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses.
Abstract
The development of a portfolio of COVID-19 vaccines to vaccinate the global population remains an urgent public health imperative1. Here we demonstrate the capacity of a subunit vaccine, comprising the SARS-CoV-2 spike protein receptor-binding domain displayed on an I53-50 protein nanoparticle scaffold (hereafter designated RBD-NP), to stimulate robust and durable neutralizing-antibody responses and protection against SARS-CoV-2 in rhesus macaques. We evaluated five adjuvants including Essai O/W 1849101, a squalene-in-water emulsion; AS03, an α-tocopherol-containing oil-in-water emulsion; AS37, a Toll-like receptor 7 (TLR7) agonist adsorbed to alum; CpG1018-alum, a TLR9 agonist formulated in alum; and alum. RBD-NP immunization with AS03, CpG1018-alum, AS37 or alum induced substantial neutralizing-antibody and CD4 T cell responses, and conferred protection against SARS-CoV-2 infection in the pharynges, nares and bronchoalveolar lavage. The neutralizing-antibody response to live virus was maintained up to 180 days after vaccination with RBD-NP in AS03 (RBD-NP-AS03), and correlated with protection from infection. RBD-NP immunization cross-neutralized the B.1.1.7 SARS-CoV-2 variant efficiently but showed a reduced response against the B.1.351 variant. RBD-NP-AS03 produced a 4.5-fold reduction in neutralization of B.1.351 whereas the group immunized with RBD-NP-AS37 produced a 16-fold reduction in neutralization of B.1.351, suggesting differences in the breadth of the neutralizing-antibody response induced by these adjuvants. Furthermore, RBD-NP-AS03 was as immunogenic as a prefusion-stabilized spike immunogen (HexaPro) with AS03 adjuvant. These data highlight the efficacy of the adjuvanted RBD-NP vaccine in promoting protective immunity against SARS-CoV-2 and have led to phase I/II clinical trials of this vaccine (NCT04742738 and NCT04750343).

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Robust induction of functional humoral response by a plant-derived Coronavirus-like particle vaccine candidate for COVID-19

TL;DR: In this article , the functional humoral response induced by two doses of CoVLP vaccine candidate from the phase 1 clinical trial, at peak immunogenicity and six months post-vaccination was profiled.
Journal ArticleDOI

SARS-CoV-2 S Glycoprotein Stabilization Strategies

TL;DR: In this article , a review of the structure-based approaches for stabilizing S-CoV-2 S glycoprotein trimers is presented, highlighting the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.
Journal ArticleDOI

Recombinant Protein Vaccines against Human Betacoronaviruses: Strategies, Approaches and Progress

TL;DR: In this article , the authors summarize the information on the designing of vaccines based on recombinant proteins against highly pathogenic human betacoronaviruses SARS-CoV, MERS-coV, and SARS CoV-2.
Journal ArticleDOI

Structural position vectors and symmetries in complex networks.

TL;DR: This work articulate a conceptually appealing and computationally extremely efficient approach to finding and characterizing all symmetric nodes by introducing a structural position vector (SPV) for each node in networks, and argues that the SPV method is generally effective for finding the asymmetric nodes in real-world networks that typically do not have a dominant regular component.
References
More filters
Journal ArticleDOI

Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein.

TL;DR: It is demonstrating that cross-neutralizing antibodies targeting conserved S epitopes can be elicited upon vaccination, and it is shown that SARS-CoV-2 S uses ACE2 to enter cells and that the receptor-binding domains of Sars- coV- 2 S and SARS S bind with similar affinities to human ACE2, correlating with the efficient spread of SATS among humans.
Journal ArticleDOI

Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK.

Merryn Voysey, +81 more
- 09 Jan 2021 - 
TL;DR: ChAdOx1 nCoV-19 has an acceptable safety profile and has been found to be efficacious against symptomatic COVID-19 in this interim analysis of ongoing clinical trials.
Journal ArticleDOI

The Architecture of SARS-CoV-2 Transcriptome.

TL;DR: Functional investigation of the unknown transcripts and RNA modifications discovered in this study will open new directions to the understanding of the life cycle and pathogenicity of SARS-CoV-2.
Related Papers (5)