scispace - formally typeset
Journal ArticleDOI

Amyloid β deposition, neurodegeneration, and cognitive decline in sporadic Alzheimer's disease: a prospective cohort study.

Reads0
Chats0
TLDR
These projections suggest a prolonged preclinical phase of AD in which Aβ deposition reaches the authors' threshold of positivity at 17·0 (95% CI 14·9-19·9) years, hippocampal atrophy at 4·2 (3·6-5·1] years, and memory impairment at 3·3 (2·5-4·5) years before the onset of dementia (clinical dementia rating score 1).
Abstract
Summary Background Similar to most chronic diseases, Alzheimer's disease (AD) develops slowly from a preclinical phase into a fully expressed clinical syndrome. We aimed to use longitudinal data to calculate the rates of amyloid β (Aβ) deposition, cerebral atrophy, and cognitive decline. Methods In this prospective cohort study, healthy controls, patients with mild cognitive impairment (MCI), and patients with AD were assessed at enrolment and every 18 months. At every visit, participants underwent neuropsychological examination, MRI, and a carbon-11-labelled Pittsburgh compound B ( 11 C-PiB) PET scan. We included participants with three or more 11 C-PiB PET follow-up assessments. Aβ burden was expressed as 11 C-PiB standardised uptake value ratio (SUVR) with the cerebellar cortex as reference region. An SUVR of 1·5 was used to discriminate high from low Aβ burdens. The slope of the regression plots over 3–5 years was used to estimate rates of change for Aβ deposition, MRI volumetrics, and cognition. We included those participants with a positive rate of Aβ deposition to calculate the trajectory of each variable over time. Findings 200 participants (145 healthy controls, 36 participants with MCI, and 19 participants with AD) were assessed at enrolment and every 18 months for a mean follow-up of 3·8 (95% CI CI 3·6–3·9) years. At baseline, significantly higher Aβ burdens were noted in patients with AD (2·27, SD 0·43) and those with MCI (1·94, 0·64) than in healthy controls (1·38, 0·39). At follow-up, 163 (82%) of the 200 participants showed positive rates of Aβ accumulation. Aβ deposition was estimated to take 19·2 (95% CI 16·8–22·5) years in an almost linear fashion—with a mean increase of 0·043 (95% CI 0·037–0·049) SUVR per year—to go from the threshold of 11 C-PiB positivity (1·5 SUVR) to the levels observed in AD. It was estimated to take 12·0 (95% CI 10·1–14·9) years from the levels observed in healthy controls with low Aβ deposition (1·2 [SD 0·1] SUVR) to the threshold of 11 C-PiB positivity. As AD progressed, the rate of Aβ deposition slowed towards a plateau. Our projections suggest a prolonged preclinical phase of AD in which Aβ deposition reaches our threshold of positivity at 17·0 (95% CI 14·9–19·9) years, hippocampal atrophy at 4·2 (3·6–5·1) years, and memory impairment at 3·3 (2·5–4·5) years before the onset of dementia (clinical dementia rating score 1). Interpretation Aβ deposition is slow and protracted, likely to extend for more than two decades. Such predictions of the rate of preclinical changes and the onset of the clinical phase of AD will facilitate the design and timing of therapeutic interventions aimed at modifying the course of this illness. Funding Science and Industry Endowment Fund (Australia), The Commonwealth Scientific and Industrial Research Organisation (Australia), The National Health and Medical Research Council of Australia Program and Project Grants, the Austin Hospital Medical Research Foundation, Victorian State Government, The Alzheimer's Drug Discovery Foundation, and the Alzheimer's Association.

read more

Citations
More filters
Journal ArticleDOI

A review of β-amyloid neuroimaging in Alzheimer's disease.

TL;DR: The main efforts of neuroimaging in AD in humans and in mouse models are summarized, with a specific focus on β-amyloid, and the potential of new applications and novel approaches are discussed.
Journal ArticleDOI

Genetic variants in Alzheimer disease – molecular and brain network approaches

TL;DR: How the study of molecular, cellular and brain networks provides additional information on the effects of LOAD-associated genetic variants at multiple biophysical scales is discussed and the clinical potential of mechanistically coupling genetic variants and disease phenotypes with multiscale brain models is highlighted.
References
More filters
Journal ArticleDOI

Clinical diagnosis of Alzheimer's disease : report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease

TL;DR: The criteria proposed are intended to serve as a guide for the diagnosis of probable, possible, and definite Alzheimer's disease; these criteria will be revised as more definitive information becomes available.
Proceedings Article

Information Theory and an Extention of the Maximum Likelihood Principle

H. Akaike
TL;DR: The classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion to provide answers to many practical problems of statistical model fitting.
Book ChapterDOI

Information Theory and an Extension of the Maximum Likelihood Principle

TL;DR: In this paper, it is shown that the classical maximum likelihood principle can be considered to be a method of asymptotic realization of an optimum estimate with respect to a very general information theoretic criterion.
Journal ArticleDOI

Mild Cognitive Impairment: Clinical Characterization and Outcome

TL;DR: Patients who meet the criteria for MCI can be differentiated from healthy control subjects and those with very mild AD, and appear to constitute a clinical entity that can be characterized for treatment interventions.
Related Papers (5)