scispace - formally typeset
Open AccessJournal ArticleDOI

Cancer Stem Cells in Squamous Cell Carcinoma Switch between Two Distinct Phenotypes That Are Preferentially Migratory or Proliferative

Reads0
Chats0
TLDR
A need to define therapeutic targets that can eradicate both EMT and self-renewing CSC variants to achieve effective SCC treatment is suggested.
Abstract
Epithelial-to-mesenchymal transition (EMT) is an important driver of tumor invasion and metastasis, which causes many cancer deaths. Cancer stem cells (CSC) that maintain and initiate tumors have also been implicated in invasion and metastasis, but whether EMT is an important contributor to CSC function is unclear. In this study, we investigated whether a population of CSCs that have undergone EMT (EMT CSCs) exists in squamous cell carcinoma (SCC). We also determined whether a separate population of CSCs that retain epithelial characteristics (non-EMT CSCs) is also present. Our studies revealed that self-renewing CSCs in SCC include two biologically-distinct phenotypes. One phenotype, termed CD44(high)ESA(high), was proliferative and retained epithelial characteristics (non-EMT CSCs), whereas the other phenotype, termed CD44(high)ESA(low), was migratory and had mesenchymal traits characteristic of EMT CSCs. We found that non-EMT and EMT CSCs could switch their epithelial or mesenchymal traits to reconstitute the cellular heterogeneity which was characteristic of CSCs. However, the ability of EMT CSCs to switch to non-EMT character was restricted to cells that were also ALDH1(+), implying that only ALDH1(+) EMT cells had the ability to seed a new epithelial tumor. Taken together, our findings highlight the identification of two distinct CSC phenotypes and suggest a need to define therapeutic targets that can eradicate both of these variants to achieve effective SCC treatment.

read more

Citations
More filters
Journal ArticleDOI

Role of microRNAs in the Regulation of Breast Cancer Stem Cells

TL;DR: The studies suggest that both normal and malignant breast stem cells exist in distinct, inter-convertible states (EMT and MET), the inter- Convertible state of which is regulated by microRNAs.
Journal ArticleDOI

Dynamic EpCAM expression on circulating and disseminating tumor cells: causes and consequences.

TL;DR: The present review summarizes the potential mechanisms and reasons for a dynamic expression of EpCAM and represents the most commonly used epithelial marker to capture CTCs/DTCs.
Journal ArticleDOI

Cancer stem cells and field cancerization of Oral squamous cell carcinoma

TL;DR: If the role of CSCs as the primary units of field cancerization process is established, their presence in the mucosa adjacent to the tumor may be an indicator for local recurrence and/or development of second primary tumors.
Journal ArticleDOI

Epithelial-to-mesenchymal transition and cancer stem(-like) cells in head and neck squamous cell carcinoma

TL;DR: A review aims to highlight key events that are involved in EMT, discusses their relevance in HNSCC progression and metastasis and explores the possibility of targeting EMT as a novel therapy in H NSCC.
References
More filters
Journal ArticleDOI

Prospective identification of tumorigenic breast cancer cells

TL;DR: The ability to prospectively identify tumorigenic cancer cells will facilitate the elucidation of pathways that regulate their growth and survival and strategies designed to target this population may lead to more effective therapies.
Journal ArticleDOI

The Epithelial-Mesenchymal Transition Generates Cells with Properties of Stem Cells

TL;DR: It is reported that the induction of an EMT in immortalized human mammary epithelial cells (HMLEs) results in the acquisition of mesenchymal traits and in the expression of stem-cell markers, and it is shown that those cells have an increased ability to form mammospheres, a property associated with mammARY epithelial stem cells.
Journal Article

Identification of a Cancer Stem Cell in Human Brain Tumors

TL;DR: The identification and purification of a cancer stem cell from human brain tumors of different phenotypes that possesses a marked capacity for proliferation, self-renewal, and differentiation is reported.
Journal ArticleDOI

ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome.

TL;DR: It is shown that normal and cancer human mammary epithelial cells with increased aldehyde dehydrogenase activity (ALDH) have stem/progenitor properties and these cells contain the subpopulation of normal breast epithelium with the broadest lineage differentiation potential and greatest growth capacity in a xenotransplant model.
Related Papers (5)