scispace - formally typeset
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

Reads0
Chats0
TLDR
In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Abstract
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

read more

Citations
More filters
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Overview of current development in electrical energy storage technologies and the application potential in power system operation

TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.
Journal ArticleDOI

Electrochemical capacitors: mechanism, materials, systems, characterization and applications

TL;DR: The latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications are reviewed and the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour is clarified for comparison.
Journal ArticleDOI

A review of electrolyte materials and compositions for electrochemical supercapacitors

TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.

Ultracapacitors: Why, How, and Where is the Technology

TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
References
More filters
Journal ArticleDOI

Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors

TL;DR: In this paper, the PICACTIF SC carbon was found to be an interesting active material for supercapacitors, with a specific capacitance as high as 125 F/g.
Journal ArticleDOI

Exfoliated Graphene Separated by Platinum Nanoparticles

TL;DR: In this article, a metal nanoparticle-graphene composite with a partially exfoliated graphene morphology derived from drying aqueous dispersions of platinum nanoparticles adhered to graphene is presented.
Journal ArticleDOI

Studies of activated carbons used in double-layer capacitors

Deyang Qu, +1 more
TL;DR: In this paper, the relation between the intrinsic pore size distribution of activated carbon materials and their electrochemical performance as electrodes of supercapacitor was discussed in detail, where activated carbons with larger pore sizes were found to be more suitable for high power applications.
Journal ArticleDOI

Nano-aggregates of single-walled graphitic carbon nano-horns

TL;DR: In this paper, a new type of carbon particle called carbon nano-horn was found, which is composed of an aggregate of many horn-shaped sheaths of single-walled graphene sheets, which can be produced at about 10 g/h.
Journal ArticleDOI

Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity

TL;DR: The synthesis of the crystalline aluminosilicate materials with tunable mesoporosity and strong acidity has potentially important technological implications for catalytic reactions of large molecules, whereas conventional mesoporous materials lack hydrothermal stability and acidity.
Related Papers (5)