scispace - formally typeset
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

TLDR
In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Abstract
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

read more

Citations
More filters
Journal ArticleDOI

High-performance Supercapacitors Based on Electrochemical-induced Vertical-aligned Carbon Nanotubes and Polyaniline Nanocomposite Electrodes.

TL;DR: A high-performance supercapacitor based on polyaniline/vertical-aligned carbon nanotubes (PANI/VA-CNTs) nanocomposite electrodes where the vertical-aligned-structure is formed by the electrochemical-induction (0.75 V).
Journal ArticleDOI

Porous carbons prepared by direct carbonization of MOFs for supercapacitors

TL;DR: In this article, three porous carbons were prepared by direct carbonization of HKUST-1, MOF-5 and Al-PCP without additional carbon precursors.
Journal ArticleDOI

Macroscopic-Scale Three-Dimensional Carbon Nanofiber Architectures for Electrochemical Energy Storage Devices

TL;DR: In this article, the authors summarized recent advances in the scalable fabrication of 3D carbon nanofiber (CNF)-based materials and their applications for electrochemical energy storage devices and gave a brief outlook to future studies.
Journal ArticleDOI

Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors

TL;DR: In this article, Hierarchical porous carbon (HPC) has been synthesized using sulfonated pitch as a precursor with a simple KOH activation process and the effect of the activation agent to precursor ratio on the porosity and the specific surface area is studied by nitrogen adsorption-desorption.
Journal ArticleDOI

Conducting Nanomaterial Sensor Using Natural Receptors

TL;DR: This Review discusses biosensors with natural receptors and then especially focuses on natural receptor-conjugated conducting nanomaterial sensors, which have a wide range of industries, such as food, cosmetics, and healthcare.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)

TL;DR: Mise au point comportant des definitions generales et la terminologie, la methodologie utilisee, les procedes experimentaux, les interpretations des donnees d'adsorption, les determinations de l'aire superficielle, and les donnes sur la mesoporosite et la microporosite.
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Related Papers (5)