scispace - formally typeset
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

Reads0
Chats0
TLDR
In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Abstract
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

read more

Citations
More filters
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Overview of current development in electrical energy storage technologies and the application potential in power system operation

TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.
Journal ArticleDOI

Electrochemical capacitors: mechanism, materials, systems, characterization and applications

TL;DR: The latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications are reviewed and the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour is clarified for comparison.
Journal ArticleDOI

A review of electrolyte materials and compositions for electrochemical supercapacitors

TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.

Ultracapacitors: Why, How, and Where is the Technology

TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
References
More filters
Journal ArticleDOI

Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene

TL;DR: The quintessential collective quantum behaviour in two dimensions, the fractional quantum Hall effect (FQHE), has so far resisted observation in graphene despite intense efforts and theoretical predictions of its existence and it is believed that these results will open the door to the physics of FQHE and other collective behaviour in graphene.
Journal ArticleDOI

Graphene-based electrochemical supercapacitors

TL;DR: Graphenes prepared by three different methods have been investigated as electrode materials in electrochemical supercapacitors in this paper, and the performance characteristics of the graphenes which are directly related to the quality, in terms of the number of layers and the surface area, are superior to that of singlewalled and multi-walled carbon nanotubes.
Journal ArticleDOI

Observation of the fractional quantum Hall effect in graphene

TL;DR: The observation of the fractional quantum Hall effect in ultraclean, suspended graphene is reported and it is shown that at low carrier density graphene becomes an insulator with a magnetic-field-tunable energy gap.
Journal ArticleDOI

Synthesis of a Large‐Scale Highly Ordered Porous Carbon Film by Self‐Assembly of Block Copolymers

TL;DR: The synthesis of well-defined porous carbon films involves four steps: monomer-block copolymer film casting, structure refining through solvent annealing, polymerization of the carbon precursor, and carbonization.
Journal ArticleDOI

Graphene oxide doped polyaniline for supercapacitors

TL;DR: In this article, a novel high performance electrode material based on fibrillar polyaniline (PANI) doped with graphene oxide sheets was synthesized via in situ polymerization of monomer in the presence of graphene oxide, with a high conductivity of 10 S cm −1 at 22°C for the obtained nanocomposite with a mass ratio of aniline/graphite oxide, 100:1.
Related Papers (5)