scispace - formally typeset
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

Reads0
Chats0
TLDR
In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Abstract
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

read more

Citations
More filters
Journal ArticleDOI

Facile Synthesis of Three-Dimensional Heteroatom-Doped and Hierarchical Egg-Box-Like Carbons Derived from Moringa oleifera Branches for High-Performance Supercapacitors

TL;DR: The as-prepared HEBLCs possess unique egg-box-like frameworks, high surface area, and interconnected porosity as well as the doping of heteroatoms (oxygen and nitrogen), endowing its excellent electrochemical performances (superior capacity, high rate capability, and outstanding cycling stability).
Journal ArticleDOI

A General Method of Fabricating Flexible Spinel-Type Oxide/Reduced Graphene Oxide Nanocomposite Aerogels as Advanced Anodes for Lithium-Ion Batteries

TL;DR: This article presents a general and facile approach to fabricate flexible spinel-type oxide/reduced graphene oxide (rGO) composite aerogels as binder-free anodes where the spinel nanoparticles (NPs) are integrated in an interconnected rGO network.
Journal ArticleDOI

Bacterial-cellulose-derived interconnected meso-microporous carbon nanofiber networks as binder-free electrodes for high-performance supercapacitors

TL;DR: In this article, a simple and general silica-assisted strategy for fabrication of interconnected 3D meso-microporous carbon nanofiber networks by confine nanospace pyrolysis of sustainable BC, which can be used as binder-free electrodes for high-performance supercapacitors.
Journal ArticleDOI

Rational Design of Carbon Nanomaterials for Electrochemical Sodium Storage and Capture

TL;DR: The rational design in the structure and chemistry of carbon materials for Sodium-ion batteries (SIBs), sodium-ion capacitors (SICs), and capacitive deionization (CDI) applications is comprehensively reviewed.
Journal ArticleDOI

Scalable combustion synthesis of graphene-welded activated carbon for high-performance supercapacitors

TL;DR: In this article, a scalable combustion synthesis to manufacture graphene-welded activated carbon in CO2 atmosphere using Mg as sacrificial solder was demonstrated, achieving a superior energy density of 80 Wh kg−1 and high power density of 70 KW−1.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)

TL;DR: Mise au point comportant des definitions generales et la terminologie, la methodologie utilisee, les procedes experimentaux, les interpretations des donnees d'adsorption, les determinations de l'aire superficielle, and les donnes sur la mesoporosite et la microporosite.
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Related Papers (5)