scispace - formally typeset
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

Reads0
Chats0
TLDR
In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Abstract
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

read more

Citations
More filters
Journal ArticleDOI

Carbon-based Supercapacitors Produced by Activation of Graphene

TL;DR: This work synthesized a porous carbon with a Brunauer-Emmett-Teller surface area, a high electrical conductivity, and a low oxygen and hydrogen content that has high values of gravimetric capacitance and energy density with organic and ionic liquid electrolytes.
Journal ArticleDOI

Overview of current development in electrical energy storage technologies and the application potential in power system operation

TL;DR: A comprehensive and clear picture of the state-of-the-art technologies available, and where they would be suited for integration into a power generation and distribution system is provided in this article.
Journal ArticleDOI

Electrochemical capacitors: mechanism, materials, systems, characterization and applications

TL;DR: The latest progress in supercapacitors in charge storage mechanisms, electrode materials, electrolyte materials, systems, characterization methods, and applications are reviewed and the newly developed charge storage mechanism for intercalative pseudocapacitive behaviour is clarified for comparison.
Journal ArticleDOI

A review of electrolyte materials and compositions for electrochemical supercapacitors

TL;DR: The principles and methods of designing and optimizing electrolytes for ES performance and application are highlighted through a comprehensive analysis of the literature, and challenges in producing high-performing electrolytes are analyzed.

Ultracapacitors: Why, How, and Where is the Technology

TL;DR: In this paper, the authors compared the power density characteristics of ultracapacitors and batteries with respect to the same charge/discharge efficiency, and showed that the battery can achieve energy densities of 10 Wh/kg or higher with a power density of 1.2 kW/kg.
References
More filters
Journal ArticleDOI

Graphene-based liquid crystal device.

TL;DR: This letter demonstrates liquid crystal devices with electrodes made of graphene that show excellent performance with a high contrast ratio and discusses the advantages of graphene compared to conventionally used metal oxides in terms of low resistivity, high transparency and chemical stability.
Journal ArticleDOI

Ordered mesoporous carbons

TL;DR: Ordered mesoporous carbons have been synthesized using ordered mesopore silica templates as discussed by the authors, where the template needs to exhibit three-dimensional pore structure in order to be suitable for the ordered mesophorous carbon synthesis, otherwise disordered microporous carbon is formed.
Journal ArticleDOI

Fabrication of Graphene/Polyaniline Composite Paper via In Situ Anodic Electropolymerization for High- Performance Flexible Electrode

TL;DR: This graphene-based composite paper electrode, consisting of graphene/polyaniline composite sheets as building blocks, shows a favorable tensile strength and a stable large electrochemical capacitance, which outperforms many other currently available carbon-based flexible electrodes and is hence particularly promising for flexible supercapacitors.
Journal ArticleDOI

High power electrochemical capacitors based on carbon nanotube electrodes

TL;DR: In this paper, a carbon nanotube sheet electrode with high power and long cycle life was used for a single cell device with 38 wt% H2SO4 as the electrolyte.
Journal ArticleDOI

Graphene-based materials as supercapacitor electrodes

TL;DR: Graphene is an emerging carbon material that may soon find practical applications as discussed by the authors, and it is a potential electrode material for electrochemical energy storage, with desirable properties to meet the specific requirements for the design and configuration of advanced supercapacitor devices.
Related Papers (5)