scispace - formally typeset
Journal ArticleDOI

Carbon Materials for Chemical Capacitive Energy Storage

Reads0
Chats0
TLDR
In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-Capacitance have been explored and show not only enhanced capacitance, but as well good cyclability.
Abstract
Carbon materials have attracted intense interests as electrode materials for electrochemical capacitors, because of their high surface area, electrical conductivity, chemical stability and low cost. Activated carbons produced by different activation processes from various precursors are the most widely used electrodes. Recently, with the rapid growth of nanotechnology, nanostructured electrode materials, such as carbon nanotubes and template-synthesized porous carbons have been developed. Their unique electrical properties and well controlled pore sizes and structures facilitate fast ion and electron transportation. In order to further improve the power and energy densities of the capacitors, carbon-based composites combining electrical double layer capacitors (EDLC)-capacitance and pseudo-capacitance have been explored. They show not only enhanced capacitance, but as well good cyclability. In this review, recent progresses on carbon-based electrode materials are summarized, including activated carbons, carbon nanotubes, and template-synthesized porous carbons, in particular mesoporous carbons. Their advantages and disadvantages as electrochemical capacitors are discussed. At the end of this review, the future trends of electrochemical capacitors with high energy and power are proposed.

read more

Citations
More filters
Journal ArticleDOI

High‐Performance Two‐Ply Yarn Supercapacitors Based on Carbon Nanotubes and Polyaniline Nanowire Arrays

TL;DR: Fine count two-ply yarn supercapacitors are constructed from carbon nanotube yarns and polyaniline nanowires and possess excellent electrochemical capacity and are very strong and flexible.
Journal ArticleDOI

Low-crystalline iron oxide hydroxide nanoparticle anode for high-performance supercapacitors.

TL;DR: An aqueous hybrid supercapacitor based on the iron oxide hydroxide anode shows stability during float voltage test for 450 h and an energy density of 104 Wh kg−1 at a power density of 1.27 kW kg−1.
Journal ArticleDOI

Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: synthesis and efficient lithium ion storage.

TL;DR: Lithium ion battery anodes made of the mesoporous graphene nanosheets have exhibited an excellent reversible capacity, and they can retain at 833 mAh/g even after numerous cycles at varied current densities, suggesting a remarkably promising candidate for energy storage.
Journal ArticleDOI

Electrolyte selection for supercapacitive devices: a critical review

TL;DR: In this article, the current state of understanding of the electrode-electrolyte interaction in supercapacitors and battery-supercapacitor hybrid devices is reviewed, and factors that affect the overall performance of the devices such as the ionic conductivity, mobility, diffusion coefficient, radius of bare and hydrated spheres, ion solvation, viscosity, dielectric constant, electrochemical stability, thermal stability and dispersion interaction.
Journal ArticleDOI

Hydrophilic Hierarchical Nitrogen‐Doped Carbon Nanocages for Ultrahigh Supercapacitive Performance

TL;DR: The synergism of large surface area, multiscale porous structure, and good conductivity endows hierarchical carbon nanocages with high-level supercapacitive performances as mentioned in this paper.
References
More filters
Journal ArticleDOI

Electric Field Effect in Atomically Thin Carbon Films

TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Journal ArticleDOI

The rise of graphene

TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Journal ArticleDOI

The electronic properties of graphene

TL;DR: In this paper, the basic theoretical aspects of graphene, a one-atom-thick allotrope of carbon, with unusual two-dimensional Dirac-like electronic excitations, are discussed.
Journal ArticleDOI

Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)

TL;DR: Mise au point comportant des definitions generales et la terminologie, la methodologie utilisee, les procedes experimentaux, les interpretations des donnees d'adsorption, les determinations de l'aire superficielle, and les donnes sur la mesoporosite et la microporosite.
Journal ArticleDOI

Materials for electrochemical capacitors

TL;DR: This work has shown that combination of pseudo-capacitive nanomaterials, including oxides, nitrides and polymers, with the latest generation of nanostructured lithium electrodes has brought the energy density of electrochemical capacitors closer to that of batteries.
Related Papers (5)