scispace - formally typeset
Open AccessJournal ArticleDOI

Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals

TLDR
This work provides a direct window into the regulatory consequences of genetic variation by sequencing RNA from 922 genotyped individuals, and presents a comprehensive description of the distribution of regulatory variation--by the specific expression phenotypes altered, the properties of affected genes, and the genomic characteristics of regulatory variants.
Abstract
Understanding the consequences of regulatory variation in the human genome remains a major challenge, with important implications for understanding gene regulation and interpreting the many disease-risk variants that fall outside of protein-coding regions. Here, we provide a direct window into the regulatory consequences of genetic variation by sequencing RNA from 922 genotyped individuals. We present a comprehensive description of the distribution of regulatory variation--by the specific expression phenotypes altered, the properties of affected genes, and the genomic characteristics of regulatory variants. We detect variants influencing expression of over ten thousand genes, and through the enhanced resolution offered by RNA-sequencing, for the first time we identify thousands of variants associated with specific phenotypes including splicing and allelic expression. Evaluating the effects of both long-range intra-chromosomal and trans (cross-chromosomal) regulation, we observe modularity in the regulatory network, with three-dimensional chromosomal configuration playing a particular role in regulatory modules within each chromosome. We also observe a significant depletion of regulatory variants affecting central and critical genes, along with a trend of reduced effect sizes as variant frequency increases, providing evidence that purifying selection and buffering have limited the deleterious impact of regulatory variation on the cell. Further, generalizing beyond observed variants, we have analyzed the genomic properties of variants associated with expression and splicing and developed a Bayesian model to predict regulatory consequences of genetic variants, applicable to the interpretation of individual genomes and disease studies. Together, these results represent a critical step toward characterizing the complete landscape of human regulatory variation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans

Kristin G. Ardlie, +132 more
- 08 May 2015 - 
TL;DR: The landscape of gene expression across tissues is described, thousands of tissue-specific and shared regulatory expression quantitative trait loci (eQTL) variants are cataloged, complex network relationships are described, and signals from genome-wide association studies explained by eQTLs are identified.
Journal ArticleDOI

Genetic effects on gene expression across human tissues.

TL;DR: It is found that local genetic variation affects gene expression levels for the majority of genes, and inter-chromosomal genetic effects for 93 genes and 112 loci are identified, enabling a mechanistic interpretation of gene regulation and the genetic basis of disease.
Journal ArticleDOI

A survey of best practices for RNA-seq data analysis

TL;DR: All of the major steps in RNA-seq data analysis are reviewed, including experimental design, quality control, read alignment, quantification of gene and transcript levels, visualization, differential gene expression, alternative splicing, functional analysis, gene fusion detection and eQTL mapping.
Journal ArticleDOI

The GTEx Consortium atlas of genetic regulatory effects across human tissues

François Aguet, +167 more
- 01 Jan 2020 - 
Journal ArticleDOI

A Gene-Based Association Method for Mapping Traits Using Reference Transcriptome Data

TL;DR: The results demonstrate that PrediXcan can detect known and new genes associated with disease traits and provide insights into the mechanism of these associations.
References
More filters
Journal ArticleDOI

BEDTools: a flexible suite of utilities for comparing genomic features

TL;DR: A new software suite for the comparison, manipulation and annotation of genomic features in Browser Extensible Data (BED) and General Feature Format (GFF) format, which allows the user to compare large datasets (e.g. next-generation sequencing data) with both public and custom genome annotation tracks.
Journal ArticleDOI

An integrated encyclopedia of DNA elements in the human genome

TL;DR: The Encyclopedia of DNA Elements project provides new insights into the organization and regulation of the authors' genes and genome, and is an expansive resource of functional annotations for biomedical research.
Journal ArticleDOI

Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation

TL;DR: The results suggest that Cufflinks can illuminate the substantial regulatory flexibility and complexity in even this well-studied model of muscle development and that it can improve transcriptome-based genome annotation.
Journal ArticleDOI

Mapping and quantifying mammalian transcriptomes by RNA-Seq.

TL;DR: Although >90% of uniquely mapped reads fell within known exons, the remaining data suggest new and revised gene models, including changed or additional promoters, exons and 3′ untranscribed regions, as well as new candidate microRNA precursors.
Related Papers (5)

Transcriptome and genome sequencing uncovers functional variation in humans

Tuuli Lappalainen, +64 more
- 26 Sep 2013 - 

The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans

Kristin G. Ardlie, +132 more
- 08 May 2015 - 

The Genotype-Tissue Expression (GTEx) project

John T. Lonsdale, +129 more
- 29 May 2013 -