scispace - formally typeset
Open AccessJournal ArticleDOI

Influenza H7N9 and H9N2 Viruses: Coexistence in Poultry Linked to Human H7N9 Infection and Genome Characteristics

TLDR
Examination of poultry and environmental specimens from local markets and farms in Hangzhou provides direct evidence that H9N2 strains coexisted with the novel human-pathogenic H7N9 influenza virus in epidemiologically linked live poultry markets.
Abstract
Avian influenza virus A of the novel H7N9 reassortant subtype was recently found to cause severe human respiratory infections in China. Live poultry markets were suspected locations of the human H7N9 infection sources, based on the cases' exposure histories and sequence similarities between viral isolates. To explore the role of live poultry markets in the origin of the novel H7N9 virus, we systematically examined poultry and environmental specimens from local markets and farms in Hangzhou, using real-time reverse transcription-PCR (RT-PCR) as well as high-throughput next-generation sequencing (NGS). RT-PCR identified specimens positive for the H7 and N9 genomic segments in all of the 12 poultry markets epidemiologically linked to 10 human H7N9 cases. Chickens, ducks, and environmental specimens from the markets contained heavily mixed subtypes, including H7, N9, H9, and N2 and sometimes H5 and N1. The idea of the coexistence of H7N9 and H9N2 subtypes in chickens was further supported by metagenomic sequencing. In contrast, human H7N9 infection cases (n = 31) were all negative for H9N2 virus according to real-time RT-PCR. The six internal segments were indistinguishable for the H7N9 and H9N2 viruses. The H9, N2, and internal-segment sequences were very close to the sequence of the H9N2 virus circulating in chickens in China recently. Our results provide direct evidence that H9N2 strains coexisted with the novel human-pathogenic H7N9 influenza virus in epidemiologically linked live poultry markets. Avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus and continues to do so. IMPORTANCE Our results suggest that avian influenza A virus of the H9N2 subtype likely made a recent contribution to the evolution of the H7N9 virus, a novel reassortant avian influenza virus A subtype, and continues to do so. The finding helps shed light on how the H7N9 virus emerged, spread, and transmitted to humans. It is of considerable interest for assessing the risk of the possible emergence of novel reassortant viruses with enhanced transmissibility to humans.

read more

Citations
More filters
Journal ArticleDOI

Deep sequencing: becoming a critical tool in clinical virology.

TL;DR: The use of the current deep sequencing platforms in virology are reviewed, focusing on three of the most studied viruses: human immunodeficiency virus (HIV), hepatitis C virus (HCV), and influenza virus.
Journal ArticleDOI

Two Outbreak Sources of Influenza A (H7N9) Viruses Have Been Established in China

TL;DR: Both sources in the Yangtze River Delta region and the Pearl RiverDelta region have been established and found to be responsible for the H7N9 outbreaks in mainland China, posing a long-term threat of H7n9 infection in humans.
Journal ArticleDOI

Interfacing Pathogen Detection with Smartphones for Point-of-Care Applications

TL;DR: There is a pressing need for simple, affordable, and easy-to-use diagnostic tools for the specific detection of pathogens at the point of care, e.g., doctors' offices, clinics, infirmaries, and particularly in resource-limited areas where medical infrastructure is lacking.
References
More filters
Journal ArticleDOI

The Sequence Alignment/Map format and SAMtools

TL;DR: SAMtools as discussed by the authors implements various utilities for post-processing alignments in the SAM format, such as indexing, variant caller and alignment viewer, and thus provides universal tools for processing read alignments.
Journal ArticleDOI

Fast and accurate short read alignment with Burrows–Wheeler transform

TL;DR: Burrows-Wheeler Alignment tool (BWA) is implemented, a new read alignment package that is based on backward search with Burrows–Wheeler Transform (BWT), to efficiently align short sequencing reads against a large reference sequence such as the human genome, allowing mismatches and gaps.
Journal ArticleDOI

MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods

TL;DR: The newest addition in MEGA5 is a collection of maximum likelihood (ML) analyses for inferring evolutionary trees, selecting best-fit substitution models, inferring ancestral states and sequences, and estimating evolutionary rates site-by-site.
Journal ArticleDOI

SOAP2: an improved ultrafast tool for short read alignment.

TL;DR: SOAP2 is a significantly improved version of the short oligonucleotide alignment program that both reduces computer memory usage and increases alignment speed at an unprecedented rate and is compatible with both single- and paired-end reads.
Journal ArticleDOI

De novo assembly of human genomes with massively parallel short read sequencing

TL;DR: The development of this de novo short read assembly method creates new opportunities for building reference sequences and carrying out accurate analyses of unexplored genomes in a cost-effective way.
Related Papers (5)