scispace - formally typeset
Open AccessJournal ArticleDOI

Molecular-channel driven actuator with considerations for multiple configurations and color switching.

TLDR
An ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation.
Abstract
The ability to achieve simultaneous intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be an unresolved challenge for artificial actuating materials. Rather than using a microporous structure, here we show an ambient-driven actuator that takes advantage of inherent nanoscale molecular channels within a commercial perfluorosulfonic acid ionomer (PFSA) film, fabricated by simple solution processing to realize a rapid response, self-adaptive, and exceptionally stable actuation. Selective patterning of PFSA films on an inert soft substrate (polyethylene terephthalate film) facilitates the formation of a range of different geometries, including a 2D (two-dimensional) roll or 3D (three-dimensional) helical structure in response to vapor stimuli. Chemical modification of the surface allowed the development of a kirigami-inspired single-layer actuator for personal humidity and heat management through macroscale geometric design features, to afford a bilayer stimuli-responsive actuator with multicolor switching capability. Intrinsic deformation with fast response in commercially available materials that can safely contact skin continues to be a challenge for artificial actuating materials. Here the authors incorporate nanoscale molecular channels within perfluorosulfonic acid ionomer for self-adaptive and ambient-driven actuation.

read more

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI

Engineering precision nanoparticles for drug delivery

TL;DR: Advances in nanoparticle design that overcome heterogeneous barriers to delivery are discussed, arguing that intelligent nanoparticles design can improve efficacy in general delivery applications while enabling tailored designs for precision applications, thereby ultimately improving patient outcome overall.
Journal ArticleDOI

Control of MXenes' electronic properties through termination and intercalation.

TL;DR: Two-dimensional transition metal carbides and nitrides (MXenes) have emerged as highly conductive and stable materials, of promise for electronic applications, and in situ electric biasing and transmission electron microscopy are used to investigate the effect of surface termination and intercalation on electronic properties.
Journal ArticleDOI

Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator

TL;DR: This work investigates the quantum transport of both bulk crystal and exfoliated MnBi 2 Te 4 flakes in a field-effect transistor geometry and observes a large longitudinal resistance and zero Hall plateau, which are characteristics of an axion insulator state.
References
More filters
Journal ArticleDOI

Hydrogels for biomedical applications.

TL;DR: The composition and synthesis of hydrogels, the character of their absorbed water, and permeation of solutes within their swollen matrices are reviewed to identify the most important properties relevant to their biomedical applications.
Journal ArticleDOI

State of Understanding of Nafion

TL;DR: Light scattering experiments revealed that the radius of gyration had a linear dependence on the molar mass of the aggregates, which suggests that the particles are in the form of rods or ribbons, or at least some elongated structure.
Journal ArticleDOI

Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology.

TL;DR: Theoretical Methodologies and Simulation Tools, and Poisson−Boltzmann Theory, and Phenomenology of Transport inProton-Conducting Materials for Fuel-CellApplications46664.2.1.
Journal ArticleDOI

Light-induced shape-memory polymers

TL;DR: Polymers containing cinnamic groups can be deformed and fixed into pre-determined shapes—such as elongated films and tubes, arches or spirals—by ultraviolet light illumination and can recover their original shape at ambient temperatures when exposed to ultraviolet light of a different wavelength.
Journal ArticleDOI

A review of water treatment membrane nanotechnologies

TL;DR: In this article, a semi-quantitative ranking system was proposed considering projected performance enhancement (over state-of-the-art analogs) and state of commercial readiness, while commercial readiness was based on known or anticipated material costs.
Related Papers (5)