scispace - formally typeset
Journal ArticleDOI

Regulation of Yeast Replicative Life Span by TOR and Sch9 in Response to Nutrients

TLDR
It is proposed that the TOR and Sch9 kinases define a primary conduit through which excess nutrient intake limits longevity in yeast.
Abstract
Calorie restriction increases life span in many organisms, including the budding yeast Saccharomyces cerevisiae . From a large-scale analysis of 564 single-gene–deletion strains of yeast, we identified 10 gene deletions that increase replicative life span. Six of these correspond to genes encoding components of the nutrient-responsive TOR and Sch9 pathways. Calorie restriction of tor1 D or sch9 D cells failed to further increase life span and, like calorie restriction, deletion of either SCH9 or TOR1 increased life span independent of the Sir2 histone deacetylase. We propose that the TOR and Sch9 kinases define a primary conduit through which excess nutrient intake limits longevity in yeast.

read more

Citations
More filters

mTOR Signaling in Growth Control and Disease

TL;DR: The mechanistic target of rapamycin (mTOR) signaling pathway senses and integrates a variety of environmental cues to regulate organismal growth and homeostasis as mentioned in this paper, and is implicated in an increasing number of pathological conditions, including cancer, obesity, type 2 diabetes, and neurodegeneration.
Journal ArticleDOI

mTOR signaling in growth control and disease.

TL;DR: Recent advances in understanding of the mTOR pathway are reviewed and pharmacological approaches to treat human pathologies linked to mTOR deregulation are discussed.
Journal ArticleDOI

TOR signaling in growth and metabolism.

TL;DR: The physiological consequences of mammalianTORC1 dysregulation suggest that inhibitors of mammalian TOR may be useful in the treatment of cancer, cardiovascular disease, autoimmunity, and metabolic disorders.
Journal ArticleDOI

mTOR Signaling in Growth, Metabolism, and Disease.

Robert A. Saxton, +1 more
- 09 Mar 2017 - 
TL;DR: Recent advances in understanding of mTOR function, regulation, and importance in mammalian physiology are reviewed and how the mTOR signaling network contributes to human disease is highlighted.
References
More filters
Journal ArticleDOI

Functional Characterization of the S. cerevisiae Genome by Gene Deletion and Parallel Analysis

TL;DR: A total of 6925 Saccharomyces cerevisiae strains were constructed, by a high-throughput strategy, each with a precise deletion of one of 2026 ORFs (more than one-third of the ORFs in the genome), finding that 17 percent were essential for viability in rich medium.
Journal ArticleDOI

Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase

TL;DR: The analysis of two SIR2 mutations supports the idea that this deacetylase activity accounts for silencing, recombination suppression and extension of life span in vivo, and provides a molecular framework of NAD-dependent histone de acetylation that connects metabolism, genomic silencing and ageing in yeast and, perhaps, in higher eukaryotes.
Journal ArticleDOI

The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms

TL;DR: It is shown that life span regulation by the Sir proteins is independent of their role in nonhomologous end joining, and increasing the gene dosage extends the life span in wild-type cells.
Journal ArticleDOI

TOR, a Central Controller of Cell Growth

TL;DR: Findings reveal that the target of rapamycin TOR controls an unusually abundant and diverse set of readouts all of which are important for cell growth, suggesting that this conserved kinase is such a central regulator.
Journal ArticleDOI

Requirement of NAD and SIR2 for Life-Span Extension by Calorie Restriction in Saccharomyces cerevisiae

TL;DR: These findings suggest that the increased longevity induced by calorie restriction requires the activation of Sir2p by NAD, the oxidized form of nicotinamide adenine dinucleotide.
Related Papers (5)