scispace - formally typeset
Search or ask a question

Showing papers on "Active galactic nucleus published in 2011"


Journal ArticleDOI
TL;DR: In this paper, the authors examined the infrared (IR) 3-500μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data.
Abstract: We present the deepest 100 to 500 μm far-infrared observations obtained with the Herschel Space Observatory as part of the GOODS-Herschel key program, and examine the infrared (IR) 3–500 μm spectral energy distributions (SEDs) of galaxies at 0 < z < 2.5, supplemented by a local reference sample from IRAS, ISO, Spitzer, and AKARI data. We determine the projected star formation densities of local galaxies from their radio and mid-IR continuum sizes. We find that the ratio of total IR luminosity to rest-frame 8 μm luminosity, IR8 (≡ L_(IR)^(tot)/L_8), follows a Gaussian distribution centered on IR8 = 4 (σ = 1.6) and defines an IR main sequence for star-forming galaxies independent of redshift and luminosity. Outliers from this main sequence produce a tail skewed toward higher values of IR8. This minority population ( 3 × 10^(10) L_⊙ kpc^(-2)) and a high specific star formation rate (i.e., starbursts). The rest-frame, UV-2700 A size of these distant starbursts is typically half that of main sequence galaxies, supporting the correlation between star formation density and starburst activity that is measured for the local sample. Locally, luminous and ultraluminous IR galaxies, (U)LIRGs (L_(IR)^(tot)≥ 10^(11) L_☉), are systematically in the starburst mode, whereas most distant (U)LIRGs form stars in the “normal” main sequence mode. This confusion between two modes of star formation is the cause of the so-called “mid-IR excess” population of galaxies found at z > 1.5 by previous studies. Main sequence galaxies have strong polycyclic aromatic hydrocarbon (PAH) emission line features, a broad far-IR bump resulting from a combination of dust temperatures (T_(dust) ~ 15–50 K), and an effective T_(dust) ~ 31 K, as derived from the peak wavelength of their infrared SED. Galaxies in the starburst regime instead exhibit weak PAH equivalent widths and a sharper far-IR bump with an effective T_(dust)~ 40 K. Finally, we present evidence that the mid-to-far IR emission of X-ray active galactic nuclei (AGN) is predominantly produced by star formation and that candidate dusty AGNs with a power-law emission in the mid-IR systematically occur in compact, dusty starbursts. After correcting for the effect of starbursts on IR8, we identify new candidates for extremely obscured AGNs.

1,235 citations


Journal ArticleDOI
TL;DR: In this paper, the authors describe global, 3D, time-dependent, non-radiative, general-relativistic, magnetohydrodynamic simulations of accreting black holes (BHs).
Abstract: We describe global, 3D, time-dependent, non-radiative, general-relativistic, magnetohydrodynamic simulations of accreting black holes (BHs). The simulations are designed to transport a large amount of magnetic flux to the centre, more than the accreting gas can force into the BH. The excess magnetic flux remains outside the BH, impedes accretion, and leads to a magnetically arrested disc. We find powerful outflows. For a BH with spin parameter a = 0.5, the efficiency with which the accretion system generates outflowing energy in jets and winds is η ≈ 30 per cent. For a = 0.99, we find η ≈ 140 per cent, which means that more energy flows out of the BH than flows in. The only way this can happen is by extracting spin energy from the BH. Thus the a = 0.99 simulation represents an unambiguous demonstration, within an astrophysically plausible scenario, of the extraction of net energy from a spinning BH via the Penrose–Blandford–Znajek mechanism. We suggest that magnetically arrested accretion might explain observations of active galactic nuclei with apparent η ≈ few × 100 per cent.

858 citations


Journal ArticleDOI
TL;DR: In this article, the authors presented a source catalog for the 4Ms Chandra Deep Field-South (CDF-S) survey, which is the deepest Chandra survey to date and covers an area of 464.5 arcmin2.
Abstract: We present source catalogs for the 4 Ms Chandra Deep Field-South (CDF-S), which is the deepest Chandra survey to date and covers an area of 464.5 arcmin2. We provide a main Chandra source catalog, which contains 740 X-ray sources that are detected with WAVDETECT at a false-positive probability threshold of 10–5 in at least one of three X-ray bands (0.5-8 keV, full band; 0.5-2 keV, soft band; and 2-8 keV, hard band) and also satisfy a binomial-probability source-selection criterion of P 75% of the main-catalog sources are active galactic nuclei (AGNs); of the 300 new main-catalog sources, about 35% are likely normal and starburst galaxies, reflecting the rise of normal and starburst galaxies at the very faint flux levels uniquely accessible to the 4 Ms CDF-S. Near the center of the 4 Ms CDF-S (i.e., within an off-axis angle of 3'), the observed AGN and galaxy source densities have reached 9800+1300 – 1100 deg–2 and 6900+1100 – 900 deg–2, respectively. Simulations show that our main catalog is highly reliable and is reasonably complete. The mean backgrounds (corrected for vignetting and exposure-time variations) are 0.063 and 0.178 counts Ms–1 pixel–1 (for a pixel size of 0492) for the soft and hard bands, respectively; the majority of the pixels have zero background counts. The 4 Ms CDF-S reaches on-axis flux limits of 3.2 × 10–17, 9.1 × 10–18, and 5.5 × 10–17 erg cm–2 s–1 for the full, soft, and hard bands, respectively. An increase in the CDF-S exposure time by a factor of 2-2.5 would provide further significant gains and probe key unexplored discovery space.

716 citations


Journal ArticleDOI
TL;DR: In this paper, the authors carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE).
Abstract: We have carried out a survey of the north and south ecliptic poles, EP-N and EP-S, respectively, with the Spitzer Space Telescope and the Wide-field Infrared Survey Explorer (WISE). The primary objective was to cross-calibrate WISE with the Spitzer and Midcourse Space Experiment (MSX) photometric systems by developing a set of calibration stars that are common to these infrared missions. The ecliptic poles were continuous viewing zones for WISE due to its polar-crossing orbit, making these areas ideal for both absolute and internal calibrations. The Spitzer IRAC and MIPS imaging survey covers a complete area of 0.40 deg^2 for the EP-N and 1.28 deg^2 for the EP-S. WISE observed the whole sky in four mid-infrared bands, 3.4, 4.6, 12, and 22 μm, during its eight-month cryogenic mission, including several hundred ecliptic polar passages; here we report on the highest coverage depths achieved by WISE, an area of ~1.5 deg^2 for both poles. Located close to the center of the EP-N, the Sy-2 galaxy NGC 6552 conveniently functions as a standard calibrator to measure the red response of the 22 μm channel of WISE. Observations from Spitzer-IRAC/MIPS/IRS-LL and WISE show that the galaxy has a strong red color in the mid-infrared due to star-formation and the presence of an active galactic nucleus (AGN), while over a baseline >1 year the mid-IR photometry of NGC 6552 is shown to vary at a level less than 2%. Combining NGC 6552 with the standard calibrator stars, the achieved photometric accuracy of the WISE calibration, relative to the Spitzer and MSX systems, is 2.4%, 2.8%, 4.5%, and 5.7% for W1 (3.4 μm), W2 (4.6 μm), W3 (12 μm), and W4 (22 μm), respectively. The WISE photometry is internally stable to better than 0.1% over the cryogenic lifetime of the mission. The secondary objective of the Spitzer-WISE Survey was to explore the poles at greater flux-level depths, exploiting the higher angular resolution Spitzer observations and the exceptionally deep (in total coverage) WISE observations that potentially reach down to the confusion limit of the survey. The rich Spitzer and WISE data sets were used to study the Galactic and extragalactic populations through source counts, color-magnitude and color-color diagrams. As an example of what the data sets facilitate, we have separated stars from galaxies, delineated normal galaxies from power-law-dominated AGNs, and reported on the different fractions of extragalactic populations. In the EP-N, we find an AGN source density of ~260 deg^(–2) to a 12 μm depth of 115 μJy, representing 15% of the total extragalactic population to this depth, similar to what has been observed for low-luminosity AGNs in other fields.

714 citations


Journal ArticleDOI
TL;DR: In this article, the evolution of the spectrum of the EBL between 0.1 and 1000 µm has been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range.
Abstract: Theextragalacticbackgroundlight(EBL)isoffundamentalimportancebothforunderstanding the entire process of galaxy evolution and for"-ray astronomy, but the overall spectrum of the EBL between 0.1 and 1000µm has never been determined directly from galaxy spectral energy distribution (SED) observations over a wide redshift range. The evolving, overall spectrum of the EBL is derived here utilizing a novel method based on observations only. This is achieved from the observed evolution of the rest-frameK-band galaxy luminosity function up to redshift 4, combined with a determination of galaxy-SED-type fractions. These are based on fitting Spitzer Wide-Area Infrared Extragalactic Survey (SWIRE) templates to a multiwavelength sample of about 6000 galaxies in the redshift range from 0.2 to 1 from the All-wavelength Extended Groth Strip International Survey (AEGIS). The changing fractions of quiescent galaxies, star-forming galaxies, starburst galaxies and active galactic nucleus (AGN) galaxies in that redshift range are estimated, and two alternative extrapolations of SED types to higher redshifts are considered. This allows calculation of the evolution of the luminosity densities from the ultraviolet (UV) to the infrared (IR), the evolving star formation ratedensityoftheUniverse,theevolvingcontributiontothebolometricEBLfromthedifferent galaxy populations including AGN galaxies and the buildup of the EBL. Our EBL calculations are compared with those from a semi-analytic model, another observationally based model and observational data. The EBL uncertainties in our modelling based directly on the data are quantified, and their consequences for attenuation of very-high-energy"-rays due to pair production on the EBL are discussed. It is concluded that the EBL is well constrained from the UV to the mid-IR, but independent efforts from IR and"-ray astronomy are needed in order to reduce the uncertainties in the far-IR.

693 citations


Journal ArticleDOI
TL;DR: In this paper, the authors identify 73 z ~ 7 and 59 z ~ 8 candidate galaxies in the reionization epoch, and use this large 26-29.4?AB?mag sample of galaxies to derive very deep luminosity functions to
Abstract: We identify 73 z ~ 7 and 59 z ~ 8 candidate galaxies in the reionization epoch, and use this large 26-29.4?AB?mag sample of galaxies to derive very deep luminosity functions to < ? 18?AB?mag and the star formation rate (SFR) density at z ~ 7 and z ~ 8 (just 800?Myr and 650?Myr after recombination, respectively). The galaxy sample is derived using a sophisticated Lyman-break technique on the full two-year Wide Field Camera 3/infrared (WFC3/IR) and Advanced Camera for Surveys (ACS) data available over the HUDF09 (~29.4?AB?mag, 5?), two nearby HUDF09 fields (~29?AB?mag, 5?, 14?arcmin2), and the wider area Early Release Science (~27.5?AB?mag, 5?, ~40?arcmin2). The application of strict optical non-detection criteria ensures the contamination fraction is kept low (just ~7% in the HUDF). This very low value includes a full assessment of the contamination from lower redshift sources, photometric scatter, active galactic nuclei, spurious sources, low-mass stars, and transients (e.g., supernovae). From careful modeling of the selection volumes for each of our search fields, we derive luminosity functions for galaxies at z ~ 7 and z ~ 8 to < ? 18?AB?mag. The faint-end slopes ? at z ~ 7 and z ~ 8 are uncertain but very steep at ? = ?2.01 ? 0.21 and ? = ?1.91 ? 0.32, respectively. Such steep slopes contrast to the local ? ?1.4 and may even be steeper than that at z ~ 4 where ? = ?1.73 ? 0.05. With such steep slopes (? ?1.7) lower luminosity galaxies dominate the galaxy luminosity density during the epoch of reionization. The SFR densities derived from these new z ~ 7 and z ~ 8 luminosity functions are consistent with the trends found at later times (lower redshifts). We find reasonable consistency with the SFR densities implied from reported stellar mass densities being only ~40% higher at z < 7. This suggests that (1) the stellar mass densities inferred from the Spitzer Infrared Array Camera (IRAC) photometry are reasonably accurate and (2) that the initial mass function at very high redshift may not be very different from that at later times.

687 citations


Journal ArticleDOI
TL;DR: In this paper, the authors reported the detection of massive molecular outflows, traced by the hydroxyl molecule (OH), in far-infrared spectra of ULIRGs obtained with Herschel-PACS as part of the SHINING key project.
Abstract: Mass outflows driven by stars and active galactic nuclei (AGNs) are a key element in many current models of galaxy evolution. They may produce the observed black-hole-galaxy mass relation and regulate and quench both star formation in the host galaxy and black hole accretion. However, observational evidence of such feedback processes through outflows of the bulk of the star-forming molecular gas is still scarce. Here we report the detection of massive molecular outflows, traced by the hydroxyl molecule (OH), in far-infrared spectra of ULIRGs obtained with Herschel-PACS as part of the SHINING key project. In some of these objects the (terminal) outflow velocities exceed 1000?km?s?1, and their outflow rates (up to ~1200 M ? yr?1) are several times larger than their star formation rates. We compare the outflow signatures in different types of ULIRGs and in starburst galaxies to address the issue of the energy source (AGN or starburst) of these outflows. We report preliminary evidence that ULIRGs with a higher AGN luminosity (and higher AGN contribution to L IR) have higher terminal velocities and shorter gas depletion timescales. The outflows in the observed ULIRGs are able to expel the cold gas reservoirs from the centers of these objects within ~106-108 years.

606 citations


Journal ArticleDOI
25 Apr 2011-Nature
TL;DR: In this paper, the authors reported the first discovery of the onset of a relativistic accretion-powered jet in the new extragalactic transient, Swift J164449.3+573451.
Abstract: Massive black holes are believed to reside at the centres of most galaxies. They can be- come detectable by accretion of matter, either continuously from a large gas reservoir or impulsively from the tidal disruption of a passing star, and conversion of the gravitational energy of the infalling matter to light. Continuous accretion drives Active Galactic Nuclei (AGN), which are known to be variable but have never been observed to turn on or off. Tidal disruption of stars by dormant massive black holes has been inferred indirectly but the on- set of a tidal disruption event has never been observed. Here we report the first discovery of the onset of a relativistic accretion-powered jet in the new extragalactic transient, Swift J164449.3+573451. The behaviour of this new source differs from both theoretical models of tidal disruption events and observations of the jet-dominated AGN known as blazars. These differences may stem from transient effects associated with the onset of a powerful jet. Such an event in the massive black hole at the centre of our Milky Way galaxy could strongly ionize the upper atmosphere of the Earth, if beamed towards us.

496 citations


Journal ArticleDOI
TL;DR: In this paper, the main effects of propagation from cosmologically distant sources, including interactions with cosmic background radiation and magnetic fields, are discussed, leading to a survey of candidate sources and their signatures.
Abstract: The origin of the highest energy cosmic rays is still unknown. The discovery of their sources is expected to reveal the workings of the most energetic astrophysical accelerators in the Universe. Current observations show a spectrum consistent with an origin in extragalactic astrophysical sources. Candidate sources range from the birth of compact objects to explosions related to gamma-ray bursts or to events in active galaxies. We discuss the main effects of propagation from cosmologically distant sources, including interactions with cosmic background radiation and magnetic fields. We examine possible acceleration mechanisms leading to a survey of candidate sources and their signatures. New questions arise from an observed hint of sky anisotropies and an unexpected evolution of composition indicators. Future observations may reach the necessary sensitivity to achieve charged particle astronomy and to observe ultrahigh-energy photons and neutrinos, which may further illuminate the workings of the Universe a...

471 citations


Journal ArticleDOI
TL;DR: In this paper, the authors used the W Hα versus [NII]/Hα (WHAN) diagram to provide a comprehensive emission-line classification of Sloan Digital Sky Survey galaxies.
Abstract: We use the W Hα versus [NII]/Hα (WHAN) diagram introduced by us in previous work to provide a comprehensive emission-line classification of Sloan Digital Sky Survey galaxies. This classification is able to cope with the large population of weak line galaxies that do not appear in traditional diagrams due to a lack of some of the diagnostic lines. A further advantage of the WHAN diagram is to allow the differentiation between two very distinct classes that overlap in the low-ionization nuclear emission-line region (LINER) region of traditional diagnostic diagrams. These are galaxies hosting a weakly active galactic nucleus (wAGN) and 'retired galaxies' (RGs), i.e. galaxies that have stopped forming stars and are ionized by their hot low-mass evolved stars. A useful criterion to distinguish true from fake AGN (i.e. the RGs) is the value of ξ, which measures the ratio of the extinction-corrected Hα luminosity with respect to the Hα luminosity expected from photoionization by stellar populations older than 10 8 yr. We find that ξ follows a markedly bimodal distribution, with a ξ≫1 population composed by systems undergoing star formation and/or nuclear activity, and a peak at ξ~1 corresponding to the prediction of the RG model. We base our classification scheme not on ξ but on a more readily available and model-independent quantity which provides an excellent observational proxy for ξ: the equivalent width of Hα. Based on the bimodal distribution of W Hα , we set the practical division between wAGN and RGs at W Hα = 3 A. Five classes of galaxies are identified within the WHAN diagram: (i) pure star-forming galaxies: log[N II]/Hα 3 A; (ii) strong AGN (i.e. Seyferts): log[NII]/Hα > -0.4 and W Hα > 6A; (iii) weak AGN: log[N n]/Hα > -0.4 and W Hα between 3 and 6 A; (iv) RGs (i.e. fake AGN): W Hα < 3 A; (v) passive galaxies (actually, lineless galaxies): W Hα and W [NII] < 0.5 A. A comparative analysis of star formation histories and of other physical and observational properties in these different classes of galaxies corroborates our proposed differentiation between RGs and wAGN in the LINER-like family. This analysis also shows similarities between strong and weak AGN on the one hand, and retired and passive galaxies on the other.

461 citations


Journal ArticleDOI
TL;DR: In this article, the authors analyzed 140 XMM-Newton-selected AGN host galaxies and a matched control sample of 1264 inactive galaxies over z ~ 0.3 − 1.0 and M∗ < 10^(11.7) M ∆ with high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging from the COSMOS field.
Abstract: What is the relevance of major mergers and interactions as triggering mechanisms for active galactic nuclei (AGNs) activity? To answer this long-standing question, we analyze 140 XMM-Newton-selected AGN host galaxies and a matched control sample of 1264 inactive galaxies over z ~ 0.3–1.0 and M_∗ < 10^(11.7) M_⊙ with high-resolution Hubble Space Telescope/Advanced Camera for Surveys imaging from the COSMOS field. The visual analysis of their morphologies by 10 independent human classifiers yields a measure of the fraction of distorted morphologies in the AGN and control samples, i.e., quantifying the signature of recent mergers which might potentially be responsible for fueling/triggering the AGN. We find that (1) the vast majority (>85%) of the AGN host galaxies do not show strong distortions and (2) there is no significant difference in the distortion fractions between active and inactive galaxies. Our findings provide the best direct evidence that, since z ~ 1, the bulk of black hole (BH) accretion has not been triggered by major galaxy mergers, therefore arguing that the alternative mechanisms, i.e., internal secular processes and minor interactions, are the leading triggers for the episodes of major BH growth.We also exclude an alternative interpretation of our results: a substantial time lag between merging and the observability of the AGN phase could wash out the most significant merging signatures, explaining the lack of enhancement of strong distortions on the AGN hosts. We show that this alternative scenario is unlikely due to (1) recent major mergers being ruled out for the majority of sources due to the high fraction of disk-hosted AGNs, (2) the lack of a significant X-ray signal in merging inactive galaxies as a signature of a potential buried AGN, and (3) the low levels of soft X-ray obscuration for AGNs hosted by interacting galaxies, in contrast to model predictions.

Journal ArticleDOI
25 Aug 2011-Nature
TL;DR: It is concluded that the tidal disruption of a star naturally explains the observed high-energy properties and radio luminosity and the inferred rate of such events, and the weaker beaming in the radio-frequency spectrum relative to γ-rays or X-rays suggests that radio searches may uncover similar events out to redshifts of z ≈ 6.
Abstract: Active galactic nuclei, which are powered by long-term accretion onto central supermassive black holes, produce relativistic jets with lifetimes of at least one million years, and the observation of the birth of such a jet is therefore unlikely. Transient accretion onto a supermassive black hole, for example through the tidal disruption of a stray star, thus offers a rare opportunity to study the birth of a relativistic jet. On 25 March 2011, an unusual transient source (Swift J164449.3+573451) was found, potentially representing such an accretion event. Here we report observations spanning centimetre to millimetre wavelengths and covering the first month of evolution of a luminous radio transient associated with Swift J164449.3+573451. The radio transient coincides with the nucleus of an inactive galaxy. We conclude that we are seeing a newly formed relativistic outflow, launched by transient accretion onto a million-solar-mass black hole. A relativistic outflow is not predicted in this situation, but we show that the tidal disruption of a star naturally explains the observed high-energy properties and radio luminosity and the inferred rate of such events. The weaker beaming in the radio-frequency spectrum relative to γ-rays or X-rays suggests that radio searches may uncover similar events out to redshifts of z ≈ 6.

Journal ArticleDOI
TL;DR: In this article, the intrinsic mid-to far-infrared spectral energy distribution (i.e. 6 −100 μm SED) of active galactic nuclei (hereafter AGNs) is defined and a set of correction factors are defined to convert either monochromatic infrared or X-ray luminosities into total SED.
Abstract: We use infrared spectroscopy and photometry to empirically define the intrinsic mid- to far-infrared spectral energy distribution (i.e. 6–100 μm SED) of thermal emission produced by typical (i.e. 2–10 keV luminosity, L2-10 keV∼ 1042–1044 erg s−1) active galactic nuclei (hereafter AGNs). The average infrared SED of typical AGNs is best described as a broken power law at ≲40 μ m that falls steeply at ≳40 μm (i.e. at far-infrared wavelengths). Despite this fall-off at long wavelengths, at least three of the 11 AGNs in our sample have demonstrated SEDs that are AGN dominated even at 60 μ m, demonstrating the importance of accounting for any AGN contribution when calculating galaxy infrared luminosities. We find that the average intrinsic AGN 6–100 μ m SED gets bluer with increasing X-ray luminosity – a trend seen both within our sample and also when we compare it with the intrinsic SEDs of more luminous quasars (i.e. L2-10 keV≳ 1044 erg s−1). The range of intrinsic AGN SEDs is more closely matched by clumpy, rather than continuous, torus models. Using our intrinsic AGN SEDs we define a set of correction factors to convert either monochromatic infrared or X-ray luminosities into total (i.e. 8–1000 μm) AGN infrared luminosities. We outline a procedure that uses our newly defined intrinsic AGN infrared SEDs, in conjunction with a selection of host-galaxy templates, to measure the AGN contribution to the infrared output of composite galaxies from photometry alone. We verify the accuracy of our SED-fitting procedure by comparing our results to two independent measures of AGN contribution: (1) 12-μm luminosities obtained from high spatial resolution observations of nearby galaxies and (2) the equivalent width of the 11.25-μm PAH feature. Our SED-fitting procedure opens up the possibility of measuring the intrinsic AGN luminosities for large numbers of galaxies with well-sampled infrared data (e.g. IRAS, ISO, Spitzer and Herschel).

Journal ArticleDOI
08 Jul 2011-Science
TL;DR: Multiwavelength observations of a unique γ-ray–selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source are presented.
Abstract: Variable x-ray and γ-ray emission is characteristic of the most extreme physical processes in the universe. We present multiwavelength observations of a unique γ-ray-selected transient detected by the Swift satellite, accompanied by bright emission across the electromagnetic spectrum, and whose properties are unlike any previously observed source. We pinpoint the event to the center of a small, star-forming galaxy at redshift z = 0.3534. Its high-energy emission has lasted much longer than any γ-ray burst, whereas its peak luminosity was ∼100 times higher than bright active galactic nuclei. The association of the outburst with the center of its host galaxy suggests that this phenomenon has its origin in a rare mechanism involving the massive black hole in the nucleus of that galaxy.

Journal ArticleDOI
TL;DR: In this paper, the authors present an X-ray spectral analysis of 126 galaxies of the 12 μm galaxy sample using Monte Carlo simulations of radiative transfer, using both a spherical and torus geometry and taking into account Compton scattering and iron fluorescence.
Abstract: We present an X-ray spectral analysis of 126 galaxies of the 12 μm galaxy sample. By studying this sample at X-ray wavelengths, we aim to determine the intrinsic power, continuum shape and obscuration level in these sources. We improve upon previous works by the use of superior data in the form of higher signal-to-noise ratio spectra, finer spectral resolution and a broader bandpass from XMM–Newton. We pay particular attention to Compton thick active galactic nucleus (AGN) with the help of new spectral fitting models that we have produced, which are based on Monte Carlo simulations of X-ray radiative transfer, using both a spherical and torus geometry, and taking into account Compton scattering and iron fluorescence. We use this data to show that with a torus geometry, unobscured sightlines can achieve a maximum equivalent width of the Fe Kα line of ∼150 eV, originally shown by Ghisellini et al. In order for this to be exceeded, the line of sight must be obscured with NH > 10 23 cm −2 , as we show for one case, NGC 3690. We also calculate flux suppression factors from the simulated data, the main conclusion from which is that for NH ≥ 10 25 cm −2 , the X-ray flux is suppressed by a factor of at least 10 in all X-ray bands and at all redshifts, revealing the biases present against these extremely heavily obscured systems inherent in all X-ray surveys. Furthermore, we confirm previous results from Murphy & Yaqoob that show that the reflection fraction determined from slab geometries is underestimated with respect to toroidal geometries. For the 12 μm selected galaxies, we investigate the distribution of X-ray power-law indices, finding that the mean (� � �= 1.90 +0.05 −0.07 and σ � = 0.31 +0.05 −0.05 ) is consistent with previous works, and that the distribution = = = =

Journal ArticleDOI
TL;DR: In this paper, a sample of 11,060 Sloan Digital Sky Survey galaxies with a close companion (rp < 80 h−170 kpc, ΔV < 200 km−s−1) was used to classify active galactic nuclei (AGN) based either on emission line ratios or on spectral classification as quasar.
Abstract: Galaxy–galaxy interactions are predicted to cause gas inflows leading to enhanced nuclear star formation. This prediction is borne out observationally, and is also supported by the gas-phase metallicity dilution in the inner regions of galaxies in close pairs. In this paper we test the further prediction that the gas inflows lead to enhanced accretion on to the central supermassive black hole, triggering activity in the nucleus. Based on a sample of 11 060 Sloan Digital Sky Survey galaxies with a close companion (rp < 80 h−170 kpc, ΔV < 200 km s−1), we classify active galactic nuclei (AGN) based either on emission line ratios or on spectral classification as a quasar. The AGN fraction in the close pairs sample is compared to a control sample of 110 600 mass- and redshift-matched control galaxies with no nearby companion. We find a clear increase in the AGN fraction in close pairs of galaxies with projected separations < 40 h−170 kpc by up to a factor of 2.5 relative to the control sample [although the enhancement depends on the chosen signal-to-noise ratio (S/N) cut of the sample]. The increase in AGN fraction is strongest in equal-mass galaxy pairings, and weakest in the lower mass component of an unequal-mass pairing. The increased AGN fraction at small separations is accompanied by an enhancement in the number of ‘composite’ galaxies whose spectra are the result of photoionization by both AGN and stars. Our results indicate that AGN activity occurs (at least in some cases) well before final coalescence and concurrently with ongoing star formation. Finally, we find a marked increase at small projected separations of the fraction of pairs in which both galaxies harbour AGN. We demonstrate that the fraction of double AGN exceeds the expected random fraction, indicating that some pairs undergo correlated nuclear activity. We discuss some of the factors that have led to conflicting results in previous studies of AGN in close pairs. Taken together with complementary studies, we favour an interpretation where interactions trigger AGN, but are not the only cause of nuclear activity.

Journal ArticleDOI
TL;DR: The authors showed that the M BH-M bulge scaling relations observed from the local to the high-z universe can be largely or even entirely explained by a non-causal origin, i.e., they do not imply the need for any physically coupled growth of BH and bulge mass, for example, through feedback by active galactic nuclei.
Abstract: We show that the M BH-M bulge scaling relations observed from the local to the high-z universe can be largely or even entirely explained by a non-causal origin, i.e., they do not imply the need for any physically coupled growth of black hole (BH) and bulge mass, for example, through feedback by active galactic nuclei (AGNs). Provided some physics for the absolute normalization, the creation of the scaling relations can be fully explained by the hierarchical assembly of BH and stellar mass through galaxy merging, from an initially uncorrelated distribution of BH and stellar masses in the early universe. We show this with a suite of dark matter halo merger trees for which we make assumptions about (uncorrelated) BH and stellar mass values at early cosmic times. We then follow the halos in the presence of global star formation and BH accretion recipes that (1) work without any coupling of the two properties per individual galaxy and (2) correctly reproduce the observed star formation and BH accretion rate density in the universe. With disk-to-bulge conversion in mergers included, our simulations even create the observed slope of ~1.1 for the M BH-M bulge relation at z = 0. This also implies that AGN feedback is not a required (though still a possible) ingredient in galaxy evolution. In light of this, other mechanisms that can be invoked to truncate star formation in massive galaxies are equally justified.

Journal ArticleDOI
TL;DR: In this paper, the authors derived and analyzed the absorption distribution of active galactic nuclei (AGNs) using a complete sample of AGNs detected by Swift-BAT in the first three years of the survey and showed that the real intrinsic fraction of Compton-thick AGNs is 20+9 −6%.
Abstract: It is well accepted that unabsorbed as well as absorbed active galactic nuclei (AGNs) are needed to explain the nature and shape of the Cosmic X-ray background (CXB), even if the fraction of highly absorbed objects (dubbed Compton-thick sources) still substantially escapes detection. We derive and analyze the absorption distribution using a complete sample of AGNs detected by Swift-BAT in the first three years of the survey. The fraction of Compton-thick AGNs represents only 4.6% of the total AGN population detected by Swift-BAT. However, we show that once corrected for the bias against the detection of very absorbed sources the real intrinsic fraction of Compton-thick AGNs is 20+9 –6%. We proved for the first time (also in the Burst Alert Telescope (BAT) band) that the anti-correlation of the fraction of absorbed AGNs and luminosity is tightly connected to the different behavior of the X-ray luminosity functions (XLFs) of absorbed and unabsorbed AGNs. This points toward a difference between the two subsamples of objects with absorbed AGNs being, on average, intrinsically less luminous than unobscured ones. Moreover, the XLFs show that the fraction of obscured AGNs might also decrease at very low luminosity. This can be successfully interpreted in the framework of a disk cloud outflow scenario as the disappearance of the obscuring region below a critical luminosity. Our results are discussed in the framework of population synthesis models and the origin of the CXB.

Journal ArticleDOI
TL;DR: In this paper, integral field spectroscopy from the Gemini telescope was used to detect a wide-angle, kiloparsec-scale outflow from a powerful quasi-stellar object (QSO)/merger Mrk 231.
Abstract: The quasi-stellar object (QSO)/merger Mrk 231 is arguably the nearest and best laboratory for studying QSO feedback. It hosts several outflows, including broad-line winds, radio jets, and a poorly understood kpc-scale outflow. In this Letter, we present integral field spectroscopy from the Gemini telescope that represents the first unambiguous detection of a wide-angle, kiloparsec-scale outflow from a powerful QSO. Using neutral gas absorption, we show that the nuclear region hosts an outflow with blueshifted velocities reaching 1100 km s{sup -1}, extending 2-3 kpc from the nucleus in all directions in the plane of the sky. A radio jet impacts the outflow north of the nucleus, accelerating it to even higher velocities (up to 1400 km s{sup -1}). Finally, 3.5 kpc south of the nucleus, star formation is simultaneously powering an outflow that reaches more modest velocities of only 570 km s{sup -1}. Blueshifted ionized gas is also detected around the nucleus at lower velocities and smaller scales. The mass and energy flux from the outflow are {approx}>2.5 times the star formation rate and {approx}>0.7% of the active galactic nucleus luminosity, consistent with negative feedback models of QSOs.

Journal ArticleDOI
TL;DR: In this paper, the radiative efficiency of a sample of 80 PG quasars with well determined bolometric luminosity was determined by thin accretion disk model spectral fits to the optical luminosity density, and the M determination based on the bulge stellar velocity dispersion (13 objects) or the broad line region (BLR).
Abstract: The radiative efficiency of AGN is commonly estimated based on the total mass accreted and the total AGN light emitted per unit volume in the universe integrated over time (the Soltan argument). In individual AGN, thin accretion disk model spectral fits can be used to deduce the absolute accretion rate u M, if the black hole mass M is known. The radiative efficiencyη is then set by the ratio of the bolometric luminosity Lbol to u Mc 2 . We apply this method to determine η in a sample of 80 PG quasars with well determined Lbol, where u M is set by thin accretion disk model fits to the optical luminosity density, and the M determination based on the bulge stellar velocity dispersion (13 objects) or the broad line region (BLR). For the BLR-based masses, we derive a mean logη = −1.05 ± 0.52 consistent with the Soltan argument based estimates. We find a strong correlation of η with M, rising from η ∼ 0.03 at M = 10 7 M⊙ and L/LEdd ∼ 1 to η ∼ 0.4 at M = 10 9 M⊙ and L/LEdd ∼ 0.3. This trend is related to the overall uniformity of Lopt/Lbol in our sample, particularly the lack of the expected increase in Lopt/Lbol with increasing M (and decreasing L/LEdd), which is a generic property of thermal disk emission at fixed η. The significant uncertainty in the M determination is not large enough to remove the correlation. The rising η with M may imply a rise in the black hole spin with M, as proposed based on other indirect arguments. Subject headings: accretion, accretion disks — black hole physics — galaxies: active — galaxies: quasars: general

Journal ArticleDOI
TL;DR: In this paper, the authors report the discovery of a powerful molecular wind from the nucleus of the non-interacting nearby S0 field galaxy NGC 1266, which is the first known outflowing molecular system that does not show any evidence of a recent interaction.
Abstract: We report the discovery of a powerful molecular wind from the nucleus of the non-interacting nearby S0 field galaxy NGC 1266. The single-dish CO profile exhibits emission to ?400?km?s?1 and requires a nested Gaussian fit to be properly described. Interferometric observations reveal a massive, centrally concentrated molecular component with a mass of 1.1 ? 109 M ? and a molecular outflow with a molecular mass of 2.4 ? 107 M ?. The molecular gas close to the systemic velocity consists of a rotating, compact nucleus with a mass of about 4.1 ? 108 M ? within a radius of 60?pc. This compact molecular nucleus has a surface density of 2.7 ? 104 M ??pc?2, more than two orders of magnitude larger than that of giant molecular clouds in the disk of the Milky Way, and it appears to sit on the Kennicutt-Schmidt relation despite its extreme kinematics and energetic activity. We interpret this nucleus as a disk that confines the outflowing wind. A mass outflow rate of 13 M ? yr?1 leads to a depletion timescale of 85 Myr. The star formation in NGC 1266 is insufficient to drive the outflow, and thus it is likely driven by the active galactic nucleus. The concentration of the majority of the molecular gas in the central 100?pc requires an extraordinary loss of angular momentum, but no obvious companion or interacting galaxy is present to enable the transfer. NGC 1266 is the first known outflowing molecular system that does not show any evidence of a recent interaction.

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (SwJ2058+05), which is the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole.
Abstract: We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration >~ months), luminous X-ray (L_X,iso ~ 3 x 10^47 erg s^-1) and radio (nu L_nu,iso ~ 10^42 erg s^-1) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A / Swift J164449.3+573451 (Sw J1644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources (compared with the expected rate of tidal disruptions) implies that either these outflows are extremely narrowly collimated (theta < 1 degree), or only a small fraction of tidal disruptions generate relativistic ejecta. Analogous to the case of long-duration gamma-ray bursts and core-collapse supernovae, we speculate that rapid spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus [AGN]), Sw J2058+05 would seem to represent a new mode of variability in these sources, as the observed properties appear largely inconsistent with known classes of AGNs capable of generating relativistic jets (blazars, narrow-line Seyfert 1 galaxies).

Journal ArticleDOI
TL;DR: The PRIMUS survey as mentioned in this paper uses a low-dispersion prism and slitmasks to observe ~2500 objects at once in a 0.18-deg2 field of view, using the Inamori Magellan Areal Camera and Spectrograph camera on the Magellan I Baade 6.5m telescope at Las Campanas Observatory.
Abstract: We present the PRIsm MUlti-object Survey (PRIMUS), a spectroscopic faint galaxy redshift survey to z ~ 1. PRIMUS uses a low-dispersion prism and slitmasks to observe ~2500 objects at once in a 0.18 deg2 field of view, using the Inamori Magellan Areal Camera and Spectrograph camera on the Magellan I Baade 6.5 m telescope at Las Campanas Observatory. PRIMUS covers a total of 9.1 deg2 of sky to a depth of i AB ~ 23.5 in seven different deep, multi-wavelength fields that have coverage from the Galaxy Evolution Explorer, Spitzer, and either XMM or Chandra, as well as multiple-band optical and near-IR coverage. PRIMUS includes ~130,000 robust redshifts of unique objects with a redshift precision of σ z /(1 + z) ~ 0.005. The redshift distribution peaks at z ~ 0.6 and extends to z = 1.2 for galaxies and z = 5 for broad-line active galactic nuclei. The motivation, observational techniques, fields, target selection, slitmask design, and observations are presented here, with a brief summary of the redshift precision; a forthcoming paper presents the data reduction, redshift fitting, redshift confidence, and survey completeness. PRIMUS is the largest faint galaxy survey undertaken to date. The high targeting fraction (~80%) and large survey size will allow for precise measures of galaxy properties and large-scale structure to z ~ 1.

Journal ArticleDOI
TL;DR: In this article, a suite of large cosmological, hydrodynamical simulations from the OWLS project is used to study the rate at which gas accretes on to galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy.
Abstract: We study the rate at which gas accretes on to galaxies and haloes and investigate whether the accreted gas was shocked to high temperatures before reaching a galaxy. For this purpose we use a suite of large cosmological, hydrodynamical simulations from the OWLS project. We improve on previous work by considering a wider range of halo masses and redshifts, by distinguishing accretion on to haloes and galaxies, by including important feedback processes, and by comparing simulations with different physics. Gas accretion is mostly smooth, with mergers only becoming important for groups and clusters. The specific rate of gas accretion on to haloes is, like that for dark matter, only weakly dependent on halo mass. For halo masses Mhalo � 10 11 Mit is relatively insensitive to feedback processes. In contrast, accretion rates on to galaxies are determined by radiative cooling and by outflows driven by supernovae and active galactic nuclei. Galactic winds increase the halo mass at which the central galaxies grow the fastest by about two orders of magnitude to Mhalo � 10 12 M� . Gas accretion is bimodal, with maximum past temperatures either of order the virial temperature or . 10 5 K. The fraction of gas accreted on to haloes in the hot mode is insensitive to feedback and metal-line cooling. It increases with redshift, but is mostly determined by halo mass, increasing gradually from less than 10% for � 10 11 Mto greater than 90% at � 10 13 M� . In contrast, for accretion on to galaxies the cold mode is always significant and the relative contributions of the two accretion modes are more sensitive to feedback and metal-line cooling. On average, the majority of stars present in any mass halo at any redshift were formed from gas accreted in the cold mode, although the hot mode contributes typically over 10% for Mhalo & 10 11 M� . Thus, while gas accretion on to haloes can be robustly predicted, the rate of accretion on to galaxies is sensitive to uncertain feedback processes. Nevertheless, it is clear that galaxies, but not their gaseous haloes, are predominantly fed by gas that did not experience an accretion shock when it entered the host halo.

Journal ArticleDOI
TL;DR: In this article, the authors reported the discovery of a powerful molecular wind from the nucleus of the non-interacting nearby S0 field galaxy NGC 1266, which is the first known outflowing molecular system that does not show any evidence of a recent interaction.
Abstract: We report the discovery of a powerful molecular wind from the nucleus of the non-interacting nearby S0 field galaxy NGC 1266. The single-dish CO profile exhibits emission to +/- 400 km/s and requires a nested Gaussian fit to be properly described. Interferometric observations reveal a massive, centrally- concentrated molecular component with a mass of 1.1x10^9 Msuns and a molecular outflow with a molecular mass of 2.4x10^7 Msuns. The molecular gas close to the systemic velocity consists of a rotating, compact nucleus with a mass of about 4.1x108 Msuns within a radius of approximately 60 pc. This compact molecular nucleus has a surface density of \approx 2.7 \times 10^4 Msuns/pc^2, more than two orders of magnitude larger than that of giant molecular clouds in the disk of the Milky Way, and it appears to sit on the Kennicutt-Schmidt relation despite its extreme kinematics and energetic activity. We interpret this nucleus as a disk that confines the outflowing wind. A mass outflow rate of 13 Msuns/yr leads to a depletion timescale of about 85 Myr. The star formation in NGC 1266 is insufficient to drive the outflow, and thus it is likely driven by the active galactic nucleus (AGN). The concentration of the majority of the molecular gas in the central 100 pc requires an extraordinary loss of angular momentum, but no obvious companion or interacting galaxy is present to enable the transfer. NGC 1266 is the first known outflowing molecular system that does not show any evidence of a recent interaction.

Journal ArticleDOI
08 Sep 2011-Nature
TL;DR: Radio observations of M87 at six frequencies reveal that the central engine of M 87 is located within 14–23Rs of the radio core at 43 GHz, which implies that the site of material infall onto the black hole and the eventual origin of the jet reside in the bright compact region seen on the image.
Abstract: Powerful radio jets from active galactic nuclei are thought to be powered by the accretion of material onto the supermassive black hole (the 'central engine') M87 is one of the closest examples of this phenomenon, and the structure of its jet has been probed on a scale of about 100 Schwarzschild radii (R(s), the radius of the event horizon) However, the location of the central black hole relative to the jet base (a bright compact radio 'core') remains elusive Observations of other jets indicate that the central engines are located about 10(4)-10(6)R(s) upstream from the radio core Here we report radio observations of M87 at six frequencies that allow us to achieve a positional accuracy of about 20 microarcseconds As the jet base becomes more transparent at higher frequencies, the multifrequency position measurements of the radio core enable us to determine the upstream end of the jet The data reveal that the central engine of M87 is located within 14-23R(s) of the radio core at 43 GHz This implies that the site of material infall onto the black hole and the eventual origin of the jet reside in the bright compact region seen on the image at 43 GHz

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like Xray luminosities.
Abstract: In this paper, we release accurate photometric redshifts for 1692 counterparts to Chandra sources in the central square degree of the Cosmic Evolution Survey (COSMOS) field. The availability of a large training set of spectroscopic redshifts that extends to faint magnitudes enabled photometric redshifts comparable to the highest quality results presently available for normal galaxies. We demonstrate that morphologically extended, faint X-ray sources without optical variability are more accurately described by a library of normal galaxies (corrected for emission lines) than by active galactic nucleus (AGN) dominated templates, even if these sources have AGN-like X-ray luminosities. Preselecting the library on the bases of the source properties allowed us to reach an accuracy σ_(Δz/(1+z(spec))~0.015 with a fraction of outliers of 5.8% for the entire Chandra-COSMOS sample. In addition, we release revised photometric redshifts for the 1735 optical counterparts of the XMM-detected sources over the entire 2 deg^2 of COSMOS. For 248 sources, our updated photometric redshift differs from the previous release by Δz > 0.2. These changes are predominantly due to the inclusion of newly available deep H-band photometry (H_(AB) = 24 mag). We illustrate once again the importance of a spectroscopic training sample and how an assumption about the nature of a source together, with the number and the depth of the available bands, influences the accuracy of the photometric redshifts determined for AGN. These considerations should be kept in mind when defining the observational strategies of upcoming large surveys targeting AGNs, such as eROSITA at X-ray energies and the Australian Square Kilometre Array Pathfinder Evolutionary Map of the Universe in the radio band.

Journal ArticleDOI
TL;DR: In this paper, the authors used the very long baseline interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273 and NGC 2960, plus a seventh previously published, to determine accurate enclosed masses within the central ~0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases.
Abstract: Observations of H_2O masers from circumnuclear disks in active galaxies for the Megamaser Cosmology Project (MCP) allow accurate measurement of the mass of supermassive black holes (BH) in these galaxies. We present the Very Long Baseline Interferometry images and kinematics of water maser emission in six active galaxies: NGC 1194, NGC 2273, NGC 2960 (Mrk 1419), NGC 4388, NGC 6264 and NGC 6323. We use the Keplerian rotation curves of these six megamaser galaxies, plus a seventh previously published, to determine accurate enclosed masses within the central ~0.3 pc of these galaxies, smaller than the radius of the sphere of influence of the central mass in all cases. We also set lower limits to the central mass densities of between 0.12 × 10^(10) and 61 × 10^(10) M_⊙ pc^(–3). For six of the seven disks, the high central densities rule out clusters of stars or stellar remnants as the central objects, and this result further supports our assumption that the enclosed mass can be attributed predominantly to a supermassive BH. The seven BHs have masses ranging between 0.75 × 10^7 and 6.5 × 10^7 M_⊙, with the mass errors dominated by the uncertainty of the Hubble constant. We compare the megamaser BH mass determination with BH mass measured from the virial estimation method. The virial estimation BH mass in four galaxies is consistent with the megamaser BH mass, but the virial mass uncertainty is much greater. Circumnuclear megamaser disks allow the best mass determination of the central BH mass in external galaxies and significantly improve the observational basis at the low-mass end of the M-σ_⋆ relation. The M-σ_⋆ relation may not be a single, low-scatter power law as originally proposed. MCP observations continue and we expect to obtain more maser BH masses in the future.

Journal ArticleDOI
TL;DR: In this article, the authors track the coevolution of supermassive black holes (SMBHs) and their host galaxies through cosmic time using the GALFORM semi-analytic model which simulates the formation and evolution of galaxies in a cold dark matter (CDM) universe.
Abstract: We track the coevolution of supermassive black holes (SMBHs) and their host galaxies through cosmic time. The calculation is embedded in the GALFORM semi-analytic model which simulates the formation and evolution of galaxies in a cold dark matter (CDM) universe. The black hole (BH) and galaxy formation models are coupled: during the evolution of the host galaxy, hot and cold gas are added to the SMBH by flows triggered by halo gas cooling, disc instabilities and galaxy mergers. This builds up the mass and spin of the BH, and the resulting accretion power regulates gas cooling and subsequent star formation. The accretion flow is assumed to form a geometrically thin cool disc when the accretion rate exceeds Graphic, and a geometrically thick, radiatively inefficient hot flow when the accretion rate falls below this value. The resulting quasar optical luminosity function matches observations well, and the mass of the SMBH correlates with the mass of the galaxy bulge as in the observed Mbh–Mbulge relation. The BH spin distribution depends strongly on whether we assume that the gas in any given accretion episode remains in the same plane or it fragments into multiple, randomly aligned accretion episodes due to its self-gravity. We refer to these cases as the ‘prolonged’ and ‘chaotic’ accretion modes, respectively. In the chaotic accretion model there is a clear correlation of spin with SMBH mass (and hence host galaxy bulge mass). Massive BHs (M > 5 × 108 M⊙) are hosted by giant elliptical galaxies and are rapidly spinning, while lower mass BHs are hosted in spiral galaxies and have much lower spin. Using the Blandford–Znajek mechanism for jet production to calculate the jet power, our model reproduces the radio loudness of radio galaxies, low ionization emission regions (LINERS) and Seyferts, suggesting that the jet properties of active galaxy nuclei (AGN) are a natural consequence of both the accretion rate on to and the spin of the central SMBH. This is the first confirmation that a CDM galaxy formation model can reproduce the observed radio phenomenology of AGN.

Journal ArticleDOI
TL;DR: In this article, high spatial resolution near-IR integral-field spectroscopy of the narrow line region (NLR) and coronal-line region (CLR) of seven Seyfert galaxies is presented.
Abstract: As part of an extensive study of the physical properties of active galactic nuclei (AGN) we report high spatial resolution near-IR integral-field spectroscopy of the narrow-line region (NLR) and coronal-line region (CLR) of seven Seyfert galaxies. These measurements elucidate for the first time the two-dimensional spatial distribution and kinematics of the recombination line Br{\gamma} and high-ionization lines [Sivi], [Alix] and [Caviii] on scales <300 pc from the AGN. The observations reveal kinematic signatures of rotation and outflow in the NLR and CLR. The spatially resolved kinematics can be modeled as a combination of an outflow bicone and a rotating disk coincident with the molecular gas. High-excitation emission is seen in both components, suggesting it is leaking out of a clumpy torus. While NGC 1068 (Seyfert 2) is viewed nearly edge-on, intermediate-type Seyferts are viewed at intermediate angles, consistent with unified schemes. A correlation between the outflow velocity and the molecular gas mass in r<30 pc indicates that the accumulation of gas around the AGN increases the collimation and velocity of the outflow. The outflow rate is 2-3 orders of magnitude greater than the accretion rate, implying that the outflow is mass-loaded by the surrounding interstellar medium (ISM). In half of the observed AGN the kinetic power of the outflow is of the order of the power required by two-stage feedback models to be thermally coupled to the ISM and match the M-{\sigma}* relation. In these objects the radio jet is clearly interacting with the ISM, indicative of a link between jet power and outflow power.