scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome breakage published in 2007"


Journal ArticleDOI
TL;DR: The cytokinesis-block micronucleus cytome assay is a comprehensive system for measuring DNA damage, cytostasis and cytotoxicity and is being applied successfully for biomonitoring of in vivo genotoxin exposure, in vitro genotoxicity testing and in diverse research fields such as nutrigenomics and pharmacogenomics as a predictor of normal tissue and tumor radiation sensitivity and cancer risk.
Abstract: The cytokinesis-block micronucleus cytome assay is a comprehensive system for measuring DNA damage, cytostasis and cytotoxicity. DNA damage events are scored specifically in once-divided binucleated (BN) cells and include (a) micronuclei (MNi), a biomarker of chromosome breakage and/or whole chromosome loss, (b) nucleoplasmic bridges (NPBs), a biomarker of DNA misrepair and/or telomere end-fusions, and (c) nuclear buds (NBUDs), a biomarker of elimination of amplified DNA and/or DNA repair complexes. Cytostatic effects are measured via the proportion of mono-, bi- and multinucleated cells and cytotoxicity via necrotic and/or apoptotic cell ratios. Further information regarding mechanisms leading to MNi, NPBs and NBUDs formation is obtained using centromere and/or telomere probes. The assay is being applied successfully for biomonitoring of in vivo genotoxin exposure, in vitro genotoxicity testing and in diverse research fields such as nutrigenomics and pharmacogenomics as well as a predictor of normal tissue and tumor radiation sensitivity and cancer risk. The procedure can take up to 5 days to complete.

1,698 citations


Journal ArticleDOI
27 Sep 2007-Nature
TL;DR: An alternative end-joining pathway, which is markedly biased towards microhomology joins, supports CSR at unexpectedly robust levels in C-NHEJ-deficient B cells, and also frequently joins Igh locus breaks to other chromosomes to generate translocations.
Abstract: Immunoglobulin variable region exons are assembled in developing B cells by V(D)J recombination. Once mature, these cells undergo class-switch recombination (CSR) when activated by antigen. CSR changes the heavy chain constant region exons (Ch) expressed with a given variable region exon from Cmu to a downstream Ch (for example, Cgamma, Cepsilon or Calpha), thereby switching expression from IgM to IgG, IgE or IgA. Both V(D)J recombination and CSR involve the introduction of DNA double-strand breaks and their repair by means of end joining. For CSR, double-strand breaks are introduced into switch regions that flank Cmu and a downstream Ch, followed by fusion of the broken switch regions. In mammalian cells, the 'classical' non-homologous end joining (C-NHEJ) pathway repairs both general DNA double-strand breaks and programmed double-strand breaks generated by V(D)J recombination. C-NHEJ, as observed during V(D)J recombination, joins ends that lack homology to form 'direct' joins, and also joins ends with several base-pair homologies to form microhomology joins. CSR joins also display direct and microhomology joins, and CSR has been suggested to use C-NHEJ. Xrcc4 and DNA ligase IV (Lig4), which cooperatively catalyse the ligation step of C-NHEJ, are the most specific C-NHEJ factors; they are absolutely required for V(D)J recombination and have no known functions other than C-NHEJ. Here we assess whether C-NHEJ is also critical for CSR by assaying CSR in Xrcc4- or Lig4-deficient mouse B cells. C-NHEJ indeed catalyses CSR joins, because C-NHEJ-deficient B cells had decreased CSR and substantial levels of IgH locus (immunoglobulin heavy chain, encoded by Igh) chromosomal breaks. However, an alternative end-joining pathway, which is markedly biased towards microhomology joins, supports CSR at unexpectedly robust levels in C-NHEJ-deficient B cells. In the absence of C-NHEJ, this alternative end-joining pathway also frequently joins Igh locus breaks to other chromosomes to generate translocations.

584 citations


Journal ArticleDOI
TL;DR: Widespread implementation of high-resolution genome analyses to detect de novo copy-number variation may identify the cause of traits previously intractable to conventional genetic analyses.
Abstract: Many clinical phenotypes occur sporadically despite genetics contributing partly or entirely to their cause. To what extent are de novo mutations the cause of sporadic traits? Locus-specific mutation rates for genomic rearrangements appear to be two to four orders of magnitude greater than nucleotide-specific rates for base substitutions. Widespread implementation of high-resolution genome analyses to detect de novo copy-number variation may identify the cause of traits previously intractable to conventional genetic analyses.

458 citations


Journal ArticleDOI
03 May 2007-Nature
TL;DR: It is shown that chromosome rearrangements can occur during BIR if dissociation and reinvasion occur within dispersed repeated sequences, and that this dynamic process could function to promote gene conversion by capture of the displaced invading strand at two-ended DSBs to prevent BIR.
Abstract: DNA double-strand breaks (DSBs) are potentially lethal lesions that arise spontaneously during normal cellular metabolism, as a consequence of environmental genotoxins or radiation, or during programmed recombination processes. Repair of DSBs by homologous recombination generally occurs by gene conversion resulting from transfer of information from an intact donor duplex to both ends of the break site of the broken chromosome. In mitotic cells, gene conversion is rarely associated with reciprocal exchange and thus limits loss of heterozygosity for markers downstream of the site of repair and restricts potentially deleterious chromosome rearrangements. DSBs that arise by replication fork collapse or by erosion of uncapped telomeres have only one free end and are thought to repair by strand invasion into a homologous duplex DNA followed by replication to the chromosome end (break-induced replication, BIR). BIR from one of the two ends of a DSB would result in loss of heterozygosity, suggesting that BIR is suppressed when DSBs have two ends so that repair occurs by the more conservative gene conversion mechanism. Here we show that BIR can occur by several rounds of strand invasion, DNA synthesis and dissociation. We further show that chromosome rearrangements can occur during BIR if dissociation and reinvasion occur within dispersed repeated sequences. This dynamic process could function to promote gene conversion by capture of the displaced invading strand at two-ended DSBs to prevent BIR.

332 citations


Journal ArticleDOI
TL;DR: The results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis.
Abstract: Using array comparative genome hybridisation (CGH) 41 de novo reciprocal translocations and 18 de novo complex chromosome rearrangements (CCRs) were screened. All cases had been interpreted as "balanced" by conventional cytogenetics. In all, 27 cases of reciprocal translocations were detected in patients with an abnormal phenotype, and after array CGH analysis, 11 were found to be unbalanced. Thus 40% (11 of 27) of patients with a "chromosomal phenotype" and an apparently balanced translocation were in fact unbalanced, and 18% (5 of 27) of the reciprocal translocations were instead complex rearrangements with >3 breakpoints. Fourteen fetuses with de novo, apparently balanced translocations, all but two with normal ultrasound findings, were also analysed and all were found to be normal using array CGH. Thirteen CCRs were detected in patients with abnormal phenotypes, two in women who had experienced repeated spontaneous abortions and three in fetuses. Sixteen patients were found to have unbalanced mutations, with up to 4 deletions. These results suggest that genome-wide array CGH may be advisable in all carriers of "balanced" CCRs. The parental origin of the deletions was investigated in 5 reciprocal translocations and 11 CCRs; all were found to be paternal. Using customized platforms in seven cases of CCRs, the deletion breakpoints were narrowed down to regions of a few hundred base pairs in length. No susceptibility motifs were associated with the imbalances. These results show that the phenotypic abnormalities of apparently balanced de novo CCRs are mainly due to cryptic deletions and that spermatogenesis is more prone to generate multiple chaotic chromosome imbalances and reciprocal translocations than oogenesis.

267 citations


Journal ArticleDOI
TL;DR: The efficiency and interplay of ATM's G2 checkpoint and repair functions are examined, showing that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and ∼20 γH2AX foci remain.
Abstract: DNA double-strand break (DSB) repair and checkpoint control represent distinct mechanisms to reduce chromosomal instability. Ataxia telangiectasia (A-T) cells have checkpoint arrest and DSB repair defects. We examine the efficiency and interplay of ATM's G2 checkpoint and repair functions. Artemis cells manifest a repair defect identical and epistatic to A-T but show proficient checkpoint responses. Only a few G2 cells enter mitosis within 4 h after irradiation with 1 Gy but manifest multiple chromosome breaks. Most checkpoint-proficient cells arrest at the G2/M checkpoint, with the length of arrest being dependent on the repair capacity. Strikingly, cells released from checkpoint arrest display one to two chromosome breaks. This represents a major contribution to chromosome breakage. The presence of chromosome breaks in cells released from checkpoint arrest suggests that release occurs before the completion of DSB repair. Strikingly, we show that checkpoint release occurs at a point when approximately three to four premature chromosome condensation breaks and approximately 20 gammaH2AX foci remain.

256 citations


Journal ArticleDOI
10 Dec 2007-Oncogene
TL;DR: Despite the constant onslaught of endogenous oxidative damage as well as frequently encountered exogenous DNA damage, genomic changes are a rare event and cells can undergo multiple rounds of replication without witnessing chromosomal alterations, demonstrating the remarkable efficiency and evolutionary importance of the pathways that function in response to DSB induction.
Abstract: DNA, the central store of our genetic information, constantly incurs damage from agents generated within the cell as well as chemicals or radiation that arise externally. Of the many different classes of damage, a DNA double-strand break (DSB) is arguably the most significant since, if unrepaired it can result in cell death and if misrepaired, it can cause chromosomal translocations, an early step in the aetiology of carcinogenesis. Endogenously generated reactive oxygen species primarily induce base damage and single strand breaks and it is unlikely that DNA DSBs are directly induced to any significant extent. However, DSBs may arise indirectly from two closely located single-strand breaks or during the repair of other lesions. They also arise when replication forks collapse, which may occur following the attempted replication of single-strand breaks or base damage. Indeed, a DSB is very likely the ultimate lesion induced by a wide range of DNA-damaging agents. The enhanced levels of endogenous chromosome breakage or chromosome rearrangements that have been observed in cells that fail to repair DSBs efficiently attests to the fact that they represent a relatively frequently encountered endogenous lesion (Karanjawala et al., 1999). Despite the constant onslaught of endogenous oxidative damage as well as frequently encountered exogenous DNA damage, genomic changes are a rare event and cells can undergo multiple rounds of replication without witnessing chromosomal alterations. This attests to the remarkable efficiency and evolutionary importance of the pathways that function in response to DSB induction.

232 citations


Journal ArticleDOI
TL;DR: It is proposed that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group.
Abstract: That closely related species often differ by chromosomal inversions was discovered by Sturtevant and Plunkett in 1926. Our knowledge of how these inversions originate is still very limited, although a prevailing view is that they are facilitated by ectopic recombination events between inverted repetitive sequences. The availability of genome sequences of related species now allows us to study in detail the mechanisms that generate interspecific inversions. We have analyzed the breakpoint regions of the 29 inversions that differentiate the chromosomes of Drosophila melanogaster and two closely related species, D. simulans and D. yakuba, and reconstructed the molecular events that underlie their origin. Experimental and computational analysis revealed that the breakpoint regions of 59% of the inversions (17/29) are associated with inverted duplications of genes or other nonrepetitive sequences. In only two cases do we find evidence for inverted repetitive sequences in inversion breakpoints. We propose that the presence of inverted duplications associated with inversion breakpoint regions is the result of staggered breaks, either isochromatid or chromatid, and that this, rather than ectopic exchange between inverted repetitive sequences, is the prevalent mechanism for the generation of inversions in the melanogaster species group. Outgroup analysis also revealed evidence for widespread breakpoint recycling. Lastly, we have found that expression domains in D. melanogaster may be disrupted in D. yakuba, bringing into question their potential adaptive significance.

193 citations


Journal ArticleDOI
TL;DR: Insight is provided into the DNA breakage and repair processes operative in somatic genome rearrangement and how the evolutionary histories of individual cancers can be reconstructed from large-scale cancer genome sequencing.
Abstract: For decades, cytogenetic studies have demonstrated that somatically acquired structural rearrangements of the genome are a common feature of most classes of human cancer. However, the characteristics of these rearrangements at sequence-level resolution have thus far been subject to very limited description. One process that is dependent upon somatic genome rearrangement is gene amplification, a mechanism often exploited by cancer cells to increase copy number and hence expression of dominantly acting cancer genes. The mechanisms underlying gene amplification are complex but must involve chromosome breakage and rejoining. We sequenced 133 different genomic rearrangements identified within four cancer amplicons involving the frequently amplified cancer genes MYC, MYCN, and ERBB2. The observed architectures of rearrangement were diverse and highly distinctive, with evidence for sister chromatid breakage-fusion-bridge cycles, formation and reinsertion of double minutes, and the presence of bizarre clusters of small genomic fragments. There were characteristic features of sequences at the breakage-fusion junctions, indicating roles for nonhomologous end joining and homologous recombination-mediated repair mechanisms together with nontemplated DNA synthesis. Evidence was also found for sequence-dependent variation in susceptibility of the genome to somatic rearrangement. The results therefore provide insights into the DNA breakage and repair processes operative in somatic genome rearrangement and illustrate how the evolutionary histories of individual cancers can be reconstructed from large-scale cancer genome sequencing.

193 citations


Journal ArticleDOI
13 Jul 2007-Cell
TL;DR: It is shown that a significant fraction of mature ATM-deficient lymphocytes contain telomere-deleted ends produced by failed end joining during V(D)J recombination that persist in peripheral lymphocytes for at least 2 weeks in vivo and are stable over several generations in vitro.

181 citations


Journal ArticleDOI
TL;DR: Multiple individuals with mental retardation and overlapping de novo submicroscopic deletions of 15q24 are described, indicating that this represents a novel syndrome caused by haploinsufficiency of one or more dosage-sensitive genes in the minimal deletion region.
Abstract: We describe multiple individuals with mental retardation and overlapping de novo submicroscopic deletions of 15q24 (1.7-3.9 Mb in size). High-resolution analysis showed that in three patients both proximal and distal breakpoints co-localized to highly identical segmental duplications (>51 kb in length, > 94% identity), suggesting non-allelic homologous recombination as the likely mechanism of origin. Sequencing studies in a fourth individual provided base pair resolution and showed that both breakpoints in this case were located in unique sequence. Despite the differences in the size and location of the deletions, all four individuals share several major features (growth retardation, microcephaly, digital abnormalities, hypospadias and loose connective tissue) and resemble one another facially (high anterior hair line, broad medial eyebrows, hypertelorism, downslanted palpebral fissures, broad nasal base, long smooth philtrum and full lower lip), indicating that this represents a novel syndrome caused by haploinsufficiency of one or more dosage-sensitive genes in the minimal deletion region. Our results define microdeletion of 15q24 as a novel recurrent genomic disorder.

Journal ArticleDOI
TL;DR: The data suggest that the post-irradiation time used for estimation of radiosensitivity at therapeutically relevant low doses (e.g., <3 Gy) in proliferating cells by scoring residual foci should be limited by the duration of the cell cycle, and that direct comparison of the kinetics of D SB repair and disappearance of DSB-co-localizing foci is not possible.
Abstract: Purpose: Recent studies revealed that some foci produced by phosphorylated histone 2A family member X (γ-H2AX) and tumor suppressor p53 binding protein 1 (53BP1) that co-localize with radiation-induced DNA double-strand breaks (DSB) remain in cells at relatively long times after irradiation and indicated a possible correlation between cellular radiosensitivity and residual foci. In this study, we investigated dose-responses and kinetics for radiation-induced 53BP1/γ-H2AX foci formation in relation to their co-localization, DSB repair and cell survival.Materials and methods: Cell survival, DSB and foci were analyzed by clonogenic assay, pulsed field gel electrophoresis (PFGE), and confocal laser microscopy, respectively, in normal human fibroblasts (VH-10) and in a cancer cell line (HeLa). Computer analysis was used to determine both the number and the area of foci.Results: We show that even at doses down to 1 cGy a statistically significant induction of 53BP1 foci is observed. While the number of foci was...

Journal ArticleDOI
TL;DR: The data are consistent with a coordinated action of Top1 and Top2 in counteracting the accumulation of torsional stress and sister chromatid entanglement at replication forks, thus preventing the diffusion of topological changes along large chromosomal regions.
Abstract: DNA topoisomerases solve topological problems during chromosome metabolism. We investigated where and when Top1 and Top2 are recruited on replicating chromosomes and how their inactivation affects fork integrity and DNA damage checkpoint activation. We show that, in the context of replicating chromatin, Top1 and Top2 act within a 600-base-pair (bp) region spanning the moving forks. Top2 exhibits additional S-phase clusters at specific intergenic loci, mostly containing promoters. TOP1 ablation does not affect fork progression and stability and does not cause activation of the Rad53 checkpoint kinase. top2 mutants accumulate sister chromatid junctions in S phase without affecting fork progression and activate Rad53 at the M-G1 transition. top1 top2 double mutants exhibit fork block and processing and phosphorylation of Rad53 and gamma H2A in S phase. The exonuclease Exo1 influences fork processing and DNA damage checkpoint activation in top1 top2 mutants. Our data are consistent with a coordinated action of Top1 and Top2 in counteracting the accumulation of torsional stress and sister chromatid entanglement at replication forks, thus preventing the diffusion of topological changes along large chromosomal regions. A failure in resolving fork-related topological constrains during S phase may therefore result in abnormal chromosome transitions, DNA damage checkpoint activation, and chromosome breakage during segregation.

Journal ArticleDOI
TL;DR: The data suggest that the FRA16D Flex1 sequence causes increased chromosome breakage by forming secondary structures that stall replication fork progression, the first identification of a sequence element within a common fragile site that increases chromosome fragility.

Journal ArticleDOI
TL;DR: Detailed mapping studies of patients with unbalanced structural rearrangements of distal 1q4 define a 3.5-Mb critical region that is hypothesize contains one or more genes that lead to microcephaly and ACC when present in only one functional copy and suggest that haploinsufficiency causes both postnatal MIC and ACC.
Abstract: Deletions of chromosome 1q42-q44 have been reported in a variety of developmental abnormalities of the brain, including microcephaly (MIC) and agenesis of the corpus callosum (ACC). Here, we describe detailed mapping studies of patients with unbalanced structural rearrangements of distal 1q4. These define a 3.5-Mb critical region extending from RP11-80B9 to RP11-241M7 that we hypothesize contains one or more genes that lead to MIC and ACC when present in only one functional copy. Next, mapping of a balanced reciprocal t(1;13)(q44;q32) translocation in a patient with postnatal MIC and ACC demonstrated a breakpoint within this region that is situated 20 kb upstream of AKT3, a serine-threonine kinase. The murine orthologue Akt3 is required for the developmental regulation of normal brain size and callosal development. Whereas sequencing of AKT3 in a panel of 45 patients with ACC did not demonstrate any pathogenic variations, whole-mount in situ hybridization confirmed expression of Akt3 in the developing central nervous system during mouse embryogenesis. AKT3 represents an excellent candidate for developmental human MIC and ACC, and we suggest that haploinsufficiency causes both postnatal MIC and ACC.

Journal ArticleDOI
TL;DR: Changes in expression of sestrins can represent an important determinant of genetic instability in neoplastic cells showing simultaneous dysfunctions of Ras and p53, and several Ras effectors independently mediate ROS up-regulation.
Abstract: Oncogenic mutations within RAS genes and inactivation of p53 are the most common events in cancer. Earlier, we reported that activated Ras contributes to chromosome instability, especially in p53-deficient cells. Here we show that an increase in intracellular reactive oxygen species (ROS) and oxidative DNA damage represents a major mechanism of Ras-induced mutagenesis. Introduction of oncogenic H- or N-Ras caused elevated intracellular ROS, accumulation of 8-oxo-2'-deoxyguanosine, and increased number of chromosome breaks in mitotic cells, which were prevented by antioxidant N-acetyl-L-cysteine. By using Ras mutants that selectively activate either of the three major targets of Ras (Raf, RalGDS, and phosphatidylinositol-3-kinase) as well as dominant-negative Rac1 and RalA mutants and inhibitors of mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinases kinase-1 and p38 MAPKs, we have shown that several Ras effectors independently mediate ROS up-regulation. Introduction of oncogenic RAS resulted in repression of transcription from sestrin family genes SESN1 and SESN3, which encode antioxidant modulators of peroxiredoxins. Inhibition of mRNAs from these genes in control cells by RNA interference substantially increased ROS levels and mutagenesis. Ectopic expression of SESN1 and SESN3 from lentiviral constructs interfered with Ras-induced ROS increase, suggesting their important contribution to the effect. The stability of Ras-induced increase in ROS was dependent on a p53 function: in the p53-positive cells displaying activation of p53 in response to Ras, only transient (4-7 days) elevation of ROS was observed, whereas in the p53-deficient cells the up-regulation was permanent. The reversion to normal ROS levels in the Ras-expressing p53-positive cells correlated with up-regulation of p53-responsive genes, including reactivation of SESN1 gene. Thus, changes in expression of sestrins can represent an important determinant of genetic instability in neoplastic cells showing simultaneous dysfunctions of Ras and p53.

Journal ArticleDOI
TL;DR: The smallest terminal deletion ever reported in a patient with mild WHS stigmata is observed, and the genes causing microcephaly, intrauterine and postnatal growth retardation are positions between 0.3 and 1.4 Mb and further refines the regions causing congenital heart disease, cleft lip and/or palate, oligodontia, and hypospadias.
Abstract: Background: The Wolf-Hirschhorn syndrome (WHS) is usually caused by terminal deletions of the short arm of chromosome 4 and is phenotypically defined by growth and mental retardation, seizures, and specific craniofacial manifestations. Large variation is observed in phenotypic expression of these features. In order to compare the phenotype with the genotype, we localised the breakpoints of the 4pter aberrations using a chromosome 4 specific tiling BAC/PAC array. Methods: In total, DNA from 21 patients was analysed, of which 8 had a cytogenetic visible and 13 a submicroscopic deletion. Results and conclusion: In addition to classical terminal deletions sized between 1.9 and 30 Mb, we observed the smallest terminal deletion (1.4 Mb) ever reported in a patient with mild WHS stigmata. In addition, we identified and mapped interstitial deletions in four patients. This study positions the genes causing microcephaly, intrauterine and postnatal growth retardation between 0.3 and 1.4 Mb and further refines the regions causing congenital heart disease, cleft lip and/or palate, oligodontia, and hypospadias.

Journal ArticleDOI
TL;DR: This widespread recombination, unexpected for an intracellular bacterium, explains why strain-typing using one or two genes, such as ompA, does not correlate with clinical phenotypes and suggests a new approach to dissect the genetic basis for clinical strain pathology with implications for evolution, host cell adaptation, and emergence of new chlamydial diseases.
Abstract: Chlamydia trachomatis is an obligate intracellular bacterium of major public health significance, infecting over one-tenth of the world’s population and causing blindness and infertility in millions. Mounting evidence supports recombination as a key source of genetic diversity among free-living bacteria. Previous research shows that intracellular bacteria such as Chlamydiaceae may also undergo recombination but whether this plays a significant evolutionary role has not been determined. Here, we examine multiple loci dispersed throughout the chromosome to determine the extent and significance of recombination among 19 laboratory reference strains and 10 present-day ocular and urogenital clinical isolates using phylogenetic reconstructions, compatibility matrices, and statistically based recombination programs. Recombination is widespread; all clinical isolates are recombinant at multiple loci with no two belonging to the same clonal lineage. Several reference strains show nonconcordant phylogenies across loci; one strain is unambiguously identified as recombinantly derived from other reference strain lineages. Frequent recombination contrasts with a low level of point substitution; novel substitutions relative to reference strains occur less than one per kilobase. Hotspots for recombination are identified downstream from ompA, which encodes the major outer membrane protein. This widespread recombination, unexpected for an intracellular bacterium, explains why strain-typing using one or two genes, such as ompA, does not correlate with clinical phenotypes. Our results do not point to specific events that are responsible for different pathogenicities but, instead, suggest a new approach to dissect the genetic basis for clinical strain pathology with implications for evolution, host cell adaptation, and emergence of new chlamydial diseases.

Journal ArticleDOI
TL;DR: These are the first reported cases of distal 22q11 deletions in which breakpoints have been characterized at the nucleotide level within LCRs, confirming that distal22q11 L CRs can and do mediate rearrangements leading to genomic disorders.
Abstract: Genomic disorders contribute significantly to genetic disease and, as detection methods improve, greater numbers are being defined. Paralogous low copy repeats (LCRs) mediate many of the chromosomal rearrangements that underlie these disorders, predisposing chromosomes to recombination errors. Deletions of proximal 22q11.2 comprise the most frequently occurring microdeletion syndrome, DiGeorge/Velocardiofacial syndrome (DGS/VCFS), in which most breakpoints have been localized to a 3 Mb region containing four large LCRs. Immediately distal to this region, there are another four related but smaller LCRs that have not been characterized extensively. We used paralog-specific primers and long-range PCR to clone, sequence, and examine the distal deletion breakpoints from two patients with de novo deletions mapping to these distal LCRs. Our results present definitive evidence of the direct involvement of LCRs in 22q11 deletions and map both breakpoints to the BCRL module, common to most 22q11 LCRs, suggesting a potential region for LCR-mediated rearrangement both in the distal LCRs and in the DGS interval. These are the first reported cases of distal 22q11 deletions in which breakpoints have been characterized at the nucleotide level within LCRs, confirming that distal 22q11 LCRs can and do mediate rearrangements leading to genomic disorders.

Journal ArticleDOI
01 Mar 2007-Genetics
TL;DR: A detailed study on the consequences that distance from inversion breakpoints has had on the inferred level of gene flow and divergence between Drosophila pseudoobscura and D. persimilis and detected a significant reduction in nucleotide variation inside the inverted second chromosome region of D. Persimilis.
Abstract: There is increasing evidence that chromosomal inversions may facilitate the formation or persistence of new species by allowing genetic factors conferring species-specific adaptations or reproductive isolation to be inherited together and by reducing or eliminating introgression. However, the genomic domain of influence of the inverted regions on introgression has not been carefully studied. Here, we present a detailed study on the consequences that distance from inversion breakpoints has had on the inferred level of gene flow and divergence between Drosophila pseudoobscura and D. persimilis. We identified the locations of the inversion breakpoints distinguishing D. pseudoobscura and D. persimilis in chromosomes 2, XR, and XL. Population genetic data were collected at specific distances from the inversion breakpoints of the second chromosome and at two loci inside the XR and XL inverted regions. For loci outside the inverted regions, we found that distance from the nearest inversion breakpoint had a significant effect on several measures of divergence and gene flow between D. pseudoobscura and D. persimilis. The data fitted a logarithmic relationship, showing that the suppression of crossovers in inversion heterozygotes also extends to loci located outside the inversion but close to it (within 1–2 Mb). Further, we detected a significant reduction in nucleotide variation inside the inverted second chromosome region of D. persimilis and near one breakpoint, consistent with a scenario in which this inversion arose and was fixed in this species by natural selection.

Journal ArticleDOI
TL;DR: The data provide evidence that the 10q22-q23 genomic region harbors one or more genes important for cognitive and behavioral development and that recurrent deletions affecting this interval define a novel genomic disorder.
Abstract: Low-copy repeats (LCRs) are genomic features that affect chromosome stability and can produce disease-associated rearrangements. We describe members of three families with deletions in 10q22.3-q23.31, a region harboring a complex set of LCRs, and demonstrate that rearrangements in this region are associated with behavioral and neurodevelopmental abnormalities, including cognitive impairment, autism, hyperactivity, and possibly psychiatric disease. Fine mapping of the deletions in members of all three families by use of a custom 10q oligonucleotide array-based comparative genomic hybridization (NimbleGen) and polymerase chain reaction–based methods demonstrated a different deletion in each family. In one proband, the deletion breakpoints are associated with DNA fragments containing noncontiguous sequences of chromosome 10, whereas, in the other two families, the breakpoints are within paralogous LCRs, removing ∼7.2 Mb and 32 genes. Our data provide evidence that the 10q22-q23 genomic region harbors one or more genes important for cognitive and behavioral development and that recurrent deletions affecting this interval define a novel genomic disorder.

Journal ArticleDOI
TL;DR: A defined sensitivity level of the G2/M checkpoint explains the prolonged arrest in repair-deficient relative to normal cells and provides a conceptual framework for the co-operative phenotype between checkpoint and repair functions in maintaining chromosomal stability.
Abstract: DNA double strand break (DSB) repair and checkpoint control represent two major mechanisms that function to reduce chromosomal instability following ionizing irradiation (IR). Ataxia telangiectasia (A-T) cells have long been known to have defective checkpoint responses. Recent studies have shown that they also have a DSB repair defect following IR raising the issue of how ATM's repair and checkpoint functions interplay to maintain chromosomal stability. A-T and Artemis cells manifest an identical and epistatic repair defect throughout the cell cycle demonstrating that ATM's major repair defect following IR represents Artemis-dependent end-processing. Artemis cells show efficient G(2)/M checkpoint induction and a prolonged arrest relative to normal cells. Following irradiation of G(2) cells, this checkpoint is dependent on ATM and A-T cells fail to show checkpoint arrest. In contrast, cells irradiated during S phase initiate a G(2)/M checkpoint which is independent of ATM and, significantly, both Artemis and A-T cells show a prolonged arrest at the G(2)/M checkpoint likely reflecting their repair defect. Strikingly, the G(2)/M checkpoint is released before the completion of repair when approximately 10-20 DSBs remain both for S phase and G(2) phase irradiated cells. This defined sensitivity level of the G(2)/M checkpoint explains the prolonged arrest in repair-deficient relative to normal cells and provides a conceptual framework for the cooperative phenotype between checkpoint and repair functions in maintaining chromosomal stability.

Journal ArticleDOI
TL;DR: Three families are identified segregating an autosomal recessive contiguous gene deletion syndrome characterised by deafness and sperm dysmotility, caused by the deletion of contiguous genes at 15q15.3.
Abstract: Background: Syndromic hearing loss that results from contiguous gene deletions is uncommon. Deafness-infertility syndrome (DIS) is caused by large contiguous gene deletions at 15q15.3. Methods: Three families with a novel syndrome characterised by deafness and infertility are described. These three families do not share a common ancestor and do not share identical deletions. Linkage was established by completing a genome-wide scan and candidate genes in the linked region were screened by direct sequencing. Results: The deleted region is about 100 kb long and involves four genes ( KIAA0377 , CKMT1B , STRC and CATSPER2 ), each of which has a telomeric duplicate. This genomic architecture underlies the mechanism by which these deletions occur. CATSPER2 and STRC are expressed in the sperm and inner ear, respectively, consistent with the phenotype in persons homozygous for this deletion. A deletion of this region has been reported in one other family segregating male infertility and sensorineural deafness, although congenital dyserythropoietic anaemia type I (CDAI) was also present, presumably due to a second deletion in another genomic region. Conclusion: We have identified three families segregating an autosomal recessive contiguous gene deletion syndrome characterised by deafness and sperm dysmotility. This new syndrome is caused by the deletion of contiguous genes at 15q15.3.

Journal ArticleDOI
TL;DR: The molecular mechanisms by which hairpins and cruciforms can trigger chromosomal fragility and subsequent aberrations in eukaryotic cells are discussed and the relationship between secondary structure-mediated genetic instability and human pathology is addressed.
Abstract: Chromosomes of many eukaryotic organisms including humans contain a large number of repetitive sequences. Several types of commonly present DNA repeats have the capacity to adopt hairpin and cruciform secondary structures. Inverted repeats, AT- and GC-rich micro- and minisatellites, comprising this class of sequence motifs, are frequently found in chromosomal regions that are prone for gross rearrangements in somatic and germ cells. Recent studies in yeast and mammals indicate that a double-strand break occurring at the sites of unstable repeats can be an initial event in the generation of chromosome rearrangements. The repeat-induced chromosomal instability is responsible for a number of human diseases and has been implicated in carcinogenesis. In this review, we discuss the molecular mechanisms by which hairpins and cruciforms can trigger chromosomal fragility and subsequent aberrations in eukaryotic cells. We also address the relationship between secondary structure-mediated genetic instability and human pathology.

Journal ArticleDOI
TL;DR: An iterative, “active” approach to initially scoring with a preliminary model, performing targeted validations, retraining the model, and then rescoring, and a flexible parameterization system that intuitively collapses from a full model of 2,503 parameters to a core one of only 10 enable the study of CNV population frequencies.
Abstract: Copy-number variants (CNVs) are an abundant form of genetic variation in humans. However, approaches for determining exact CNV breakpoint sequences (physical deletion or duplication boundaries) across individuals, crucial for associating genotype to phenotype, have been lacking so far, and the vast majority of CNVs have been reported with approximate genomic coordinates only. Here, we report an approach, called BreakPtr, for fine-mapping CNVs (available from http://breakptr.gersteinlab.org). We statistically integrate both sequence characteristics and data from high-resolution comparative genome hybridization experiments in a discrete-valued, bivariate hidden Markov model. Incorporation of nucleotide-sequence information allows us to take into account the fact that recently duplicated sequences (e.g., segmental duplications) often coincide with breakpoints. In anticipation of an upcoming increase in CNV data, we developed an iterative, “active” approach to initially scoring with a preliminary model, performing targeted validations, retraining the model, and then rescoring, and a flexible parameterization system that intuitively collapses from a full model of 2,503 parameters to a core one of only 10. Using our approach, we accurately mapped >400 breakpoints on chromosome 22 and a region of chromosome 11, refining the boundaries of many previously approximately mapped CNVs. Four predicted breakpoints flanked known disease-associated deletions. We validated an additional four predicted CNV breakpoints by sequencing. Overall, our results suggest a predictive resolution of ≈300bp. This level of resolution enables more precise correlations between CNVs and across individuals than previously possible, allowing the study of CNV population frequencies. Further, it enabled us to demonstrate a clear Mendelian pattern of inheritance for one of the CNVs.

Journal ArticleDOI
TL;DR: The findings suggest that non-syndromic PRS may be caused by both SOX9 and KCNJ2 dysregulation.
Abstract: Background: The Pierre Robin sequence (PRS), consisting of cleft palate, micrognathia and glossoptosis, can be seen as part of the phenotype in other Mendelian syndromes—for instance, campomelic dysplasia (CD) which is caused by SOX9 mutations—but the aetiology of non-syndromic PRS has not yet been unravelled. Objective: To gain more insight into the aetiology of PRS by studying patients with PRS using genetic and cytogenetic methods. Methods: 10 unrelated patients with PRS were investigated by chromosome analyses and bacterial artificial chromosome arrays. A balanced translocation was found in one patient, and the breakpoints were mapped with fluorescence in situ hybridisation and Southern blot analysis. All patients were screened for SOX9 and KCNJ2 mutations, and in five of the patients expression analysis of SOX9 and KCNJ2 was carried out by quantitative real-time PCR. Results: An abnormal balanced karyotype 46,XX, t(2;17)(q23.3;q24.3) was identified in one patient with PRS and the 17q breakpoint was mapped to 1.13 Mb upstream of the transcription factor SOX9 and 800 kb downstream of the gene KCNJ2 . Furthermore, a significantly reduced SOX9 and KCNJ2 mRNA expression was observed in patients with PRS. Conclusion: Our findings suggest that non-syndromic PRS may be caused by both SOX9 and KCNJ2 dysregulation.

Journal ArticleDOI
TL;DR: It is reported that AID is required for c-myc to Ig V-JH translocations induced by IL-6, and DNA breaks can be detected at this locus in B cells undergoing SHM.
Abstract: Chromosome translocations between oncogenes and the region spanning the immunoglobulin (Ig) heavy chain (IgH) variable (V), diversity (D), and joining (J) gene segments (Ig V-J(H) region) are found in several mature B cell lymphomas in humans and mice. The breakpoints are frequently adjacent to the recombination signal sequences targeted by recombination activating genes 1 and 2 during antigen receptor assembly in pre-B cells, suggesting that these translocations might be the result of aberrant V(D)J recombination. However, in mature B cells undergoing activation-induced cytidine deaminase (AID)-dependent somatic hypermutation (SHM), duplications or deletions that would necessitate a double-strand break make up 6% of all the Ig V-J(H) region-associated somatic mutations. Furthermore, DNA breaks can be detected at this locus in B cells undergoing SHM. To determine whether SHM might induce c-myc to Ig V-J(H) translocations, we searched for such events in both interleukin (IL) 6 transgenic (IL-6 tg) and AID(-/-) IL-6 tg mice. Here, we report that AID is required for c-myc to Ig V-J(H) translocations induced by IL-6.

Journal ArticleDOI
TL;DR: The results showed that long-term As exposure may be associated with damage of chromosomes and DNA, gene mutations, gene deletions, and alterations of DNA synthesis and repair ability.
Abstract: Although inorganic arsenic (iAs) is a well-known human carcinogen recognized by the World Health Organization (2001) and the International Agency for Research on Cancer (1987), the mechanism of carcinogenicity are not clear. Because of significant differences in arsenic (As) metabolism between experimental animals and humans, the use of animal models to evaluate the carcinogenic effects iAs has not been established successfully (Goering et al. 1999). For decades, As has been considered a nongenotoxic carcinogen because it is only weakly active or, more often, completely inactive in bacterial and mammalian cell mutation assays (Hei and Filipic 2004). Recently, increasing evidence has shown that As is a strong, dose-dependent gene and chromosomal mutagen that is capable of inducing mostly multilocus deletions (Hei et al. 1998). Experiments in mammalian cells have also shown that this induction was significantly reduced in the presence of antioxidant enzymes (Liu et al. 2002). As early as 1976, villagers from Guizhou province in southwestern China were reported to be suffering severe symptoms of arsenicosis (Zhou et al. 1993), which was attributed to exposure to high levels of As in food, especially in corn and chili peppers, and to a lesser extent by breathing As-laden air (Finkelman et al. 2003). Villagers mined local low-grade As-containing coal from abundant, small local coal pits, with As-coal concentrations mostly in the range of hundreds of milligrams per kilogram (Finkelman et al. 1999; Zheng et al. 1999). Corn and chili peppers were dried over unventilated indoor stoves used for every day cooking and for heating during the winter months. Repeated surveys of As-coal and medical examinations have identified nine towns in four counties in southwest Guizhou province as having high levels of As in food and air (Zhang et al. 2000a). Approximately 200,000 people within the four counties were at risk of exposure to high levels of As; 3,000 cases of arsenicosis were diagnosed in the late 1990s, with approximately 2,000 of these cases in Xinren county alone (Liu et al. 2002). Over the years, various measures adopted by local governments, such as shutting down the coal pits containing high levels of As and installation of ventilated stoves, have been only minimally effective until a health education campaign was implemented in 2005 (An et al. 2005). New cases of arsenicosis have been identified each year since 1990, although there was evidence of reduction in exposure as early as 1998. Between 1998 and 2004, collected coal samples had As concentrations of 92–816 mg/kg (Huang et al. 2002). The average concentration in indoor air during that time was 0.087 ± 0.045 mg/m3 (n = 22), which is lower than that in indoor air in 1991 [0.46 ± 0.30 mg/m3 (n = 18); Zhang et al. 2000a; Zhou et al.1993]. Urinary As concentrations declined from 130.6 ± 121.2 μg/L (n = 167) in 1998 to 97.0 ± 76.1 μg/L (n = 43) in 2004. This finding coincided with the decrease of As concentrations in indoor air. In the exposed population, skin lesions were common. Other damage included lung dysfunction, neuropathy, and nephrotoxicity. The prevalence of hepatomegaly was 20%. Approximately 200 people have died from the effects of the most severe As poisoning, which included liver cirrhosis, ascites, and liver and skin cancers. Treatment of individuals who have arsenicosis was difficult because of a long exposure time of more than 30 years (Zhou et al.1993) and the high level of As exposure in the population. In this article, we report the results of a series of investigations between 1998 and 2004, which included a large number of individuals with arsenicosis. To look for cellular and molecular biomarkers of exposure, we collected blood and skin samples from villagers who had been exposed to As. We analyzed the effects of As exposure on chromosome and DNA damage, DNA synthesis and repair, and tumor suppressor gene mutations. One of our goals was to identify molecular biomarkers for early diagnosis that may be applicable to populations exposed to much lower levels of As, usually found in drinking water.

Journal ArticleDOI
TL;DR: Utilizing a chromosome 15-specific comparative genomic hybridization genomic microarray (array-CGH), this genomic organization provides evidence for a common mechanism for the generation of both common and rare deletion types.
Abstract: Angelman syndrome (AS) is a neurodevelopmental disorder characterized by mental retardation, absent speech, ataxia, and a happy disposition. Deletions of the 15q11q13 region are found in approximately 70% of AS patients. The deletions are sub-classified into class I and class II based on their sizes of approximately 6.8 and approximately 6.0, respectively, with two different proximal breakpoints and a common distal breakpoint. Utilizing a chromosome 15-specific comparative genomic hybridization genomic microarray (array-CGH), we have identified, determined the deletion sizes, and mapped the breakpoints in a cohort of 44 cases, to relate those breakpoints to the genomic architecture and derive more precise genotype-phenotype correlations. Interestingly four patients of the 44 studied (9.1%) had novel and unusually large deletions, and are reported here. This is the first report of very large deletions of 15q11q13 resulting in AS; the largest deletion being >10.6 Mb. These novel deletions involve three different distal breakpoints, two of which have been earlier shown to be involved in the generation of isodicentric 15q chromosomes (idic15). Additionally, precise determination of the deletion breakpoints reveals the presence of directly oriented low-copy repeats (LCRs) flanking the recurrent and novel breakpoints. The LCRs are adequate in size, orientation, and homology to enable abnormal recombination events leading to deletions and duplications. This genomic organization provides evidence for a common mechanism for the generation of both common and rare deletion types. Larger deletions result in a loss of several genes outside the common Angelman syndrome-Prader-Willi syndrome (AS-PWS) critical interval, and a more severe phenotype.

Journal ArticleDOI
TL;DR: Clinical, cytogenetic, and molecular data from two additional patients carrying balanced translocations involving the same 2q37.1 chromosome band and chromosomes 8 and 13 suggest that the overexpression of this gene in translocation patients could be due to its separation from a negative regulatory element located on chromosome 2, which would constitute a previously undescribed mutational mechanism.
Abstract: Overexpression of the C-type natriuretic peptide, encoded by the NPPC gene in 2q37.1, was recently reported in a patient presenting an overgrowth phenotype and a balanced t(2;7)(q37.1;q21.3) translocation. We present clinical, cytogenetic, and molecular data from two additional patients carrying balanced translocations involving the same 2q37.1 chromosome band and chromosomes 8 and 13, respectively. The clinical phenotype of these patients is very similar to the first patient described. In addition to the overgrowth syndrome, there is evidence of generalized cartilage dysplasia. In these two new cases, we found overexpression of NPPC, confirming that this unusual overgrowth phenotype in humans is due to the overexpression of this gene. The involvement of three different chromosomes and a cluster of breakpoints around the NPPC gene suggests that the overexpression of this gene in translocation patients could be due to its separation from a negative regulatory element located on chromosome 2, which would constitute a previously undescribed mutational mechanism.