scispace - formally typeset
Search or ask a question

Showing papers on "Chromosome conformation capture published in 2018"


Journal ArticleDOI
09 Feb 2018-Science
TL;DR: A pathway of mitotic chromosome folding is described that unifies many previous observations and identifies roles of specific molecular machines, condensin I and II, in these major conformational transitions.
Abstract: INTRODUCTION During mitosis, cells compact their chromosomes into dense rod-shaped structures to ensure their reliable transmission to daughter cells. Our work explores how cells achieve this compaction. We integrate genetic, genomic, and computational approaches to characterize the key steps in mitotic chromosome formation from the G 2 nucleus to metaphase, and we identify roles of specific molecular machines, condensin I and II, in these major conformational transitions. RATIONALE We used chicken DT-40 cells expressing an analog-sensitive CDK1 to produce cell cultures that synchronously enter mitosis. We collected cells at key time points during mitotic entry; analyzed chromosome organization by microscopy, chromosome conformation capture, and polymer simulations; and delineated a pathway of mitotic chromosome formation. We used engineered cell lines to study the function of condensin complexes, which are critical for mitotic chromosome formation. We fused condensin I and II subunits to plant auxin-inducible degron domains, thus enabling their rapid depletion in late G 2 just before mitotic entry. These cell lines allowed us to determine the roles of condensin I and II in specific steps of the mitotic chromosome morphogenesis pathway. RESULTS Our analysis of G 2 chromosomes reveals hallmarks of interphase chromosomes, including topologically associating domains and compartments. Upon entry into prophase, this organization is lost within minutes, and by late prophase, chromosomes are folded as arrays of consecutive loops condensed around a central axis. These loops project with random but mutually correlated angles from the axis. During prometaphase, the loop array undergoes two major reorganizations. First, it acquires a helical arrangement of loops. Polymer simulations of Hi-C data show that the centrally located axis acquires a helical twist so that consecutive loops emanate as the steps of a spiral staircase. Second, the chromatin loops become nested with ~400-kb outer loops split up by ~80-kb inner loops. As prometaphase proceeds, chromosomes shorten through progressive helical winding, with the numbers of loops per turn increasing. As a result, the size of a helical turn grows from ~3 Mb (~40 loops) to ~12 Mb (~150 loops). Depletion of condensin I or II before mitotic entry revealed their differing roles in mitotic chromosome formation. Either condensin can mediate loop array formation. However, condensin II is required for the helical twisting of the scaffold from which loops emanate, whereas condensin I modulates the size and arrangement of nested inner loops. CONCLUSION We describe a pathway of mitotic chromosome folding that unifies many previous observations. In prophase, condensins mediate the loss of interphase organization and the formation of arrays of consecutive loops. In prometaphase, chromosomes adopt a spiral staircase–like structure with a helically arranged axial scaffold of condensin II at the bases of chromatin loops. The condensin II loops are further compacted by condensin I into clusters of smaller nested loops that are additionally collapsed by chromatin-to-chromatin attractions. The combination of nested loops distributed around a helically twisted axis plus dense chromatin packing achieves the 10,000-fold compaction of chromatin into linearly organized chromosomes that is required for accurate chromosome segregation when cells divide.

553 citations


Journal ArticleDOI
31 Aug 2018-Science
TL;DR: A single-cell chromatin conformation capture method that combines a transposon-based whole-genome amplification method to detect many chromatin contacts, called META (multiplex end-tagging amplification), and an algorithm to impute the two chromosome haplotypes linked by each contact is developed.
Abstract: Three-dimensional genome structures play a key role in gene regulation and cell functions Characterization of genome structures necessitates single-cell measurements This has been achieved for haploid cells but has remained a challenge for diploid cells We developed a single-cell chromatin conformation capture method, termed Dip-C, that combines a transposon-based whole-genome amplification method to detect many chromatin contacts, called META (multiplex end-tagging amplification), and an algorithm to impute the two chromosome haplotypes linked by each contact We reconstructed the genome structures of single diploid human cells from a lymphoblastoid cell line and from primary blood cells with high spatial resolution, locating specific single-nucleotide and copy number variations in the nucleus The two alleles of imprinted loci and the two X chromosomes were structurally different Cells of different types displayed statistically distinct genome structures Such structural cell typing is crucial for understanding cell functions

325 citations


Journal ArticleDOI
TL;DR: An integrative framework for identifying structural variants (SVs) in cancer that applies optical mapping, Hi-C, and whole-genome sequencing is presented and finds SVs affecting distal regulatory sequences, DNA replication, and three-dimensional chromatin structure.
Abstract: Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes.

255 citations


Journal ArticleDOI
TL;DR: Results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections, likely to play a major role in regulatory transactions during DNA-dependent processes.
Abstract: Deciphering the rules of genome folding in the cell nucleus is essential to understand its functions. Recent chromosome conformation capture (Hi-C) studies have revealed that the genome is partitioned into topologically associating domains (TADs), which demarcate functional epigenetic domains defined by combinations of specific chromatin marks. However, whether TADs are true physical units in each cell nucleus or whether they reflect statistical frequencies of measured interactions within cell populations is unclear. Using a combination of Hi-C, three-dimensional (3D) fluorescent in situ hybridization, super-resolution microscopy, and polymer modeling, we provide an integrative view of chromatin folding in Drosophila. We observed that repressed TADs form a succession of discrete nanocompartments, interspersed by less condensed active regions. Single-cell analysis revealed a consistent TAD-based physical compartmentalization of the chromatin fiber, with some degree of heterogeneity in intra-TAD conformations and in cis and trans inter-TAD contact events. These results indicate that TADs are fundamental 3D genome units that engage in dynamic higher-order inter-TAD connections. This domain-based architecture is likely to play a major role in regulatory transactions during DNA-dependent processes.

241 citations


Journal ArticleDOI
TL;DR: It is shown that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression and providing a tool for analyzing the disease-causing potential of SVs.
Abstract: Structural variants (SVs) can result in changes in gene expression due to abnormal chromatin folding and cause disease. However, the prediction of such effects remains a challenge. Here we present a polymer-physics-based approach (PRISMR) to model 3D chromatin folding and to predict enhancer-promoter contacts. PRISMR predicts higher-order chromatin structure from genome-wide chromosome conformation capture (Hi-C) data. Using the EPHA4 locus as a model, the effects of pathogenic SVs are predicted in silico and compared to Hi-C data generated from mouse limb buds and patient-derived fibroblasts. PRISMR deconvolves the folding complexity of the EPHA4 locus and identifies SV-induced ectopic contacts and alterations of 3D genome organization in homozygous or heterozygous states. We show that SVs can reconfigure topologically associating domains, thereby producing extensive rewiring of regulatory interactions and causing disease by gene misexpression. PRISMR can be used to predict interactions in silico, thereby providing a tool for analyzing the disease-causing potential of SVs.

170 citations


Journal ArticleDOI
TL;DR: This study provides a reference for the analysis of chromatin domains from Hi-C experiments and useful guidelines for choosing a suitable approach based on the experimental design, available data, and biological question of interest.
Abstract: Chromatin folding gives rise to structural elements among which are clusters of densely interacting DNA regions termed topologically associating domains (TADs). TADs have been characterized across multiple species, tissue types, and differentiation stages, sometimes in association with regulation of biological functions. The reliability and reproducibility of these findings are intrinsically related with the correct identification of these domains from high-throughput chromatin conformation capture (Hi-C) experiments. Here, we test and compare 22 computational methods to identify TADs across 20 different conditions. We find that TAD sizes and numbers vary significantly among callers and data resolutions, challenging the definition of an average TAD size, but strengthening the hypothesis that TADs are hierarchically organized domains, rather than disjoint structural elements. Performances of these methods differ based on data resolution and normalization strategy, but a core set of TAD callers consistently retrieve reproducible domains, even at low sequencing depths, that are enriched for TAD-associated biological features. This study provides a reference for the analysis of chromatin domains from Hi-C experiments and useful guidelines for choosing a suitable approach based on the experimental design, available data, and biological question of interest.

166 citations


Journal ArticleDOI
TL;DR: Analysis by Tri-C identifies heterogeneous patterns of single-allele interactions between CTCF boundary elements, indicating that the formation of chromatin domains likely results from a dynamic process.
Abstract: The promoters of mammalian genes are commonly regulated by multiple distal enhancers, which physically interact within discrete chromatin domains. How such domains form and how the regulatory elements within them interact in single cells is not understood. To address this we developed Tri-C, a new chromosome conformation capture (3C) approach, to characterize concurrent chromatin interactions at individual alleles. Analysis by Tri-C identifies heterogeneous patterns of single-allele interactions between CTCF boundary elements, indicating that the formation of chromatin domains likely results from a dynamic process. Within these domains, we observe specific higher-order structures that involve simultaneous interactions between multiple enhancers and promoters. Such regulatory hubs provide a structural basis for understanding how multiple cis-regulatory elements act together to establish robust regulation of gene expression.

146 citations


Journal ArticleDOI
TL;DR: A highly predictive heteromorphic polymer model, where the chromatin fiber varied along its length, was developed, which predicted the 3D organization of genomic loci at a population and single-cell level.

127 citations


Journal ArticleDOI
17 Oct 2018-Nature
TL;DR: De novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei are reported, and histone variants are identified as a molecular link between genome architecture, chromatin conformation and antigen variation.
Abstract: Many evolutionarily distant pathogenic organisms have evolved similar survival strategies to evade the immune responses of their hosts. These include antigenic variation, through which an infecting organism prevents clearance by periodically altering the identity of proteins that are visible to the immune system of the host1. Antigenic variation requires large reservoirs of immunologically diverse antigen genes, which are often generated through homologous recombination, as well as mechanisms to ensure the expression of one or very few antigens at any given time. Both homologous recombination and gene expression are affected by three-dimensional genome architecture and local DNA accessibility2,3. Factors that link three-dimensional genome architecture, local chromatin conformation and antigenic variation have, to our knowledge, not yet been identified in any organism. One of the major obstacles to studying the role of genome architecture in antigenic variation has been the highly repetitive nature and heterozygosity of antigen-gene arrays, which has precluded complete genome assembly in many pathogens. Here we report the de novo haplotype-specific assembly and scaffolding of the long antigen-gene arrays of the model protozoan parasite Trypanosoma brucei, using long-read sequencing technology and conserved features of chromosome folding4. Genome-wide chromosome conformation capture (Hi-C) reveals a distinct partitioning of the genome, with antigen-encoding subtelomeric regions that are folded into distinct, highly compact compartments. In addition, we performed a range of analyses—Hi-C, fluorescence in situ hybridization, assays for transposase-accessible chromatin using sequencing and single-cell RNA sequencing—that showed that deletion of the histone variants H3.V and H4.V increases antigen-gene clustering, DNA accessibility across sites of antigen expression and switching of the expressed antigen isoform, via homologous recombination. Our analyses identify histone variants as a molecular link between global genome architecture, local chromatin conformation and antigenic variation.

123 citations


Journal ArticleDOI
TL;DR: It is demonstrated that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner, and this suggests that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation.
Abstract: The binding of the transcriptional regulator CTCF to the genome has been implicated in the formation of topologically associated domains (TADs). However, the general mechanisms of folding the genome into TADs are not fully understood. Here we test the effects of deleting a CTCF-rich locus on TAD boundary formation. Using genome-wide chromosome conformation capture (Hi-C), we focus on one TAD boundary on chromosome X harboring ~ 15 CTCF binding sites and located at the long non-coding RNA (lncRNA) locus Firre. Specifically, this TAD boundary is invariant across evolution, tissues, and temporal dynamics of X-chromosome inactivation. We demonstrate that neither the deletion of this locus nor the ectopic insertion of Firre cDNA or its ectopic expression are sufficient to alter TADs in a sex-specific or allele-specific manner. In contrast, Firre’s deletion disrupts the chromatin super-loop formation of the inactive X-chromosome. Collectively, our findings suggest that apart from CTCF binding, additional mechanisms may play roles in establishing TAD boundary formation. Although CTCF binding has been implicated in the formation of topologically associated domains (TADs) the mechanisms folding the genome into TADs are not fully understood. Here the authors investigate the TAD boundary on lncRNA locus Firre, which has ~ 15 CTCF binding sites, and its organization.

98 citations


Journal ArticleDOI
TL;DR: A database named 3DIV (a 3D-genome Interaction Viewer and database) that provides a list of long-range chromatin interaction partners for the queried locus with genomic and epigenomic annotations, and is the first of its kind to collect all publicly available human Hi-C data.
Abstract: Three-dimensional (3D) chromatin structure is an emerging paradigm for understanding gene regulation mechanisms. Hi-C (high-throughput chromatin conformation capture), a method to detect long-range chromatin interactions, allows extensive genome-wide investigation of 3D chromatin structure. However, broad application of Hi-C data have been hindered by the level of complexity in processing Hi-C data and the large size of raw sequencing data. In order to overcome these limitations, we constructed a database named 3DIV (a 3D-genome Interaction Viewer and database) that provides a list of long-range chromatin interaction partners for the queried locus with genomic and epigenomic annotations. 3DIV is the first of its kind to collect all publicly available human Hi-C data to provide 66 billion uniformly processed raw Hi-C read pairs obtained from 80 different human cell/tissue types. In contrast to other databases, 3DIV uniquely provides normalized chromatin interaction frequencies against genomic distance dependent background signals and a dynamic browsing visualization tool for the listed interactions, which could greatly advance the interpretation of chromatin interactions. '3DIV' is available at http://kobic.kr/3div.

Journal ArticleDOI
TL;DR: The method introduces a distance-centric analysis and visualization of the differences between two Hi-C datasets on a single plot that allows for a data-driven normalization of biases using locally weighted linear regression (loess), and is able to remove between-dataset bias present inHi-C matrices.
Abstract: Changes in spatial chromatin interactions are now emerging as a unifying mechanism orchestrating the regulation of gene expression. Hi-C sequencing technology allows insight into chromatin interactions on a genome-wide scale. However, Hi-C data contains many DNA sequence- and technology-driven biases. These biases prevent effective comparison of chromatin interactions aimed at identifying genomic regions differentially interacting between, e.g., disease-normal states or different cell types. Several methods have been developed for normalizing individual Hi-C datasets. However, they fail to account for biases between two or more Hi-C datasets, hindering comparative analysis of chromatin interactions. We developed a simple and effective method, HiCcompare, for the joint normalization and differential analysis of multiple Hi-C datasets. The method introduces a distance-centric analysis and visualization of the differences between two Hi-C datasets on a single plot that allows for a data-driven normalization of biases using locally weighted linear regression (loess). HiCcompare outperforms methods for normalizing individual Hi-C datasets and methods for differential analysis (diffHiC, FIND) in detecting a priori known chromatin interaction differences while preserving the detection of genomic structures, such as A/B compartments. HiCcompare is able to remove between-dataset bias present in Hi-C matrices. It also provides a user-friendly tool to allow the scientific community to perform direct comparisons between the growing number of pre-processed Hi-C datasets available at online repositories. HiCcompare is freely available as a Bioconductor R package https://bioconductor.org/packages/HiCcompare/ .

Journal ArticleDOI
TL;DR: This Review summarizes the understanding of plant chromatin organization and positioning beyond the nucleosomal level, advanced by up-to-date chromatin conformation capture methods and visualization techniques, as well as discusses future directions.
Abstract: Information and function of a genome are not only decorated with epigenetic marks in the linear DNA sequence but also in their non-random spatial organization in the nucleus. Recent research has revealed that three-dimensional (3D) chromatin organization is highly correlated with the functionality of the genome, contributing to many cellular processes. Driven by the improvements in chromatin conformation capture methods and visualization techniques, the past decade has been an exciting period for the study of plants' 3D genome structures, and our knowledge in this area has been substantially advanced. This Review describes our current understanding of plant chromatin organization and positioning beyond the nucleosomal level, and discusses future directions.

Journal ArticleDOI
TL;DR: It is suggested that chromatin folding enables the clock to regulate rhythmic transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.
Abstract: Temporal control of physiology requires the interplay between gene networks involved in daily timekeeping and tissue function across different organs. How the circadian clock interweaves with tissue-specific transcriptional programs is poorly understood. Here, we dissected temporal and tissue-specific regulation at multiple gene regulatory layers by examining mouse tissues with an intact or disrupted clock over time. Integrated analysis uncovered two distinct regulatory modes underlying tissue-specific rhythms: tissue-specific oscillations in transcription factor (TF) activity, which were linked to feeding-fasting cycles in liver and sodium homeostasis in kidney; and colocalized binding of clock and tissue-specific transcription factors at distal enhancers. Chromosome conformation capture (4C-seq) in liver and kidney identified liver-specific chromatin loops that recruited clock-bound enhancers to promoters to regulate liver-specific transcriptional rhythms. Furthermore, this looping was remarkably promoter-specific on the scale of less than 10 kilobases (kb). Enhancers can contact a rhythmic promoter while looping out nearby nonrhythmic alternative promoters, confining rhythmic enhancer activity to specific promoters. These findings suggest that chromatin folding enables the clock to regulate rhythmic transcription of specific promoters to output temporal transcriptional programs tailored to different tissues.

Journal ArticleDOI
TL;DR: This high-quality assembly allows us to reconstruct the chromosomal events that have led to the unusual sex chromosome karyotype in D. miranda, including the independent de novo formation of a pair of sex chromosomes at two distinct time points, or the reversion of a former Y chromosome to an autosome.
Abstract: While short-read sequencing technology has resulted in a sharp increase in the number of species with genome assemblies, these assemblies are typically highly fragmented. Repeats pose the largest challenge for reference genome assembly, and pericentromeric regions and the repeat-rich Y chromosome are typically ignored from sequencing projects. Here, we assemble the genome of Drosophila miranda using long reads for contig formation, chromatin interaction maps for scaffolding and short reads, and optical mapping and bacterial artificial chromosome (BAC) clone sequencing for consensus validation. Our assembly recovers entire chromosomes and contains large fractions of repetitive DNA, including about 41.5 Mb of pericentromeric and telomeric regions, and >100 Mb of the recently formed highly repetitive neo-Y chromosome. While Y chromosome evolution is typically characterized by global sequence loss and shrinkage, the neo-Y increased in size by almost 3-fold because of the accumulation of repetitive sequences. Our high-quality assembly allows us to reconstruct the chromosomal events that have led to the unusual sex chromosome karyotype in D. miranda, including the independent de novo formation of a pair of sex chromosomes at two distinct time points, or the reversion of a former Y chromosome to an autosome.

Journal ArticleDOI
TL;DR: Hi-C contact maps represent the superimposition of CTCF/cohesin-dependent and -independent folding states and reveal the segregation of chromatin into active and inactive compartments and the folding of DNA into self-associating domains and loops.

Journal ArticleDOI
TL;DR: Roles of the Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), a nuclear matrix (NM)-associated protein, are investigated, suggesting important roles of NM-associated proteins in genome organization.
Abstract: Eukaryotic chromosomes are folded into higher-order conformations to coordinate genome functions. In addition to long-range chromatin loops, recent chromosome conformation capture (3C)-based studies have indicated higher levels of chromatin structures including compartments and topologically associating domains (TADs), which may serve as units of genome organization and functions. However, the molecular machinery underlying these hierarchically three-dimensional (3D) chromatin architectures remains poorly understood. Via high-throughput assays, including in situ Hi-C, DamID, ChIP-seq, and RNA-seq, we investigated roles of the Heterogeneous Nuclear Ribonucleoprotein U (HNRNPU), a nuclear matrix (NM)-associated protein, in 3D genome organization. Upon the depletion of HNRNPU in mouse hepatocytes, the coverage of lamina-associated domains (LADs) in the genome increases from 53.1% to 68.6%, and a global condensation of chromatin was observed. Furthermore, disruption of HNRNPU leads to compartment switching on 7.5% of the genome, decreases TAD boundary strengths at borders between A (active) and B (inactive) compartments, and reduces chromatin loop intensities. Long-range chromatin interactions between and within compartments or TADs are also significantly remodeled upon HNRNPU depletion. Intriguingly, HNRNPU mainly associates with active chromatin, and 80% of HNRNPU peaks coincide with the binding of CTCF or RAD21. Collectively, we demonstrated that HNRNPU functions as a major factor maintaining 3D chromatin architecture, suggesting important roles of NM-associated proteins in genome organization.

Journal ArticleDOI
TL;DR: DLO Hi-C is a new method to investigate the 3D genome that requires only two rounds of digestion and ligation and removes non-ligated DNA in a cost-effective step by purifying specific linker-ligate DNA fragments.
Abstract: Chromosome conformation capture (3C) technologies can be used to investigate 3D genomic structures. However, high background noise, high costs, and a lack of straightforward noise evaluation in current methods impede the advancement of 3D genomic research. Here we developed a simple digestion-ligation-only Hi-C (DLO Hi-C) technology to explore the 3D landscape of the genome. This method requires only two rounds of digestion and ligation, without the need for biotin labeling and pulldown. Non-ligated DNA was efficiently removed in a cost-effective step by purifying specific linker-ligated DNA fragments. Notably, random ligation could be quickly evaluated in an early quality-control step before sequencing. Moreover, an in situ version of DLO Hi-C using a four-cutter restriction enzyme has been developed. We applied DLO Hi-C to delineate the genomic architecture of THP-1 and K562 cells and uncovered chromosomal translocations. This technology may facilitate investigation of genomic organization, gene regulation, and (meta)genome assembly.

Journal ArticleDOI
TL;DR: A concordance measure called DIfferences between Smoothed COntact maps (GenomeDISCO) is introduced for assessing the similarity of a pair of contact maps obtained from chromosome conformation capture experiments, which accurately distinguishes biological replicates from samples obtained from different cell types.
Abstract: Motivation The three-dimensional organization of chromatin plays a critical role in gene regulation and disease. High-throughput chromosome conformation capture experiments such as Hi-C are used to obtain genome-wide maps of three-dimensional chromatin contacts. However, robust estimation of data quality and systematic comparison of these contact maps is challenging due to the multi-scale, hierarchical structure of chromatin contacts and the resulting properties of experimental noise in the data. Measuring concordance of contact maps is important for assessing reproducibility of replicate experiments and for modeling variation between different cellular contexts. Results We introduce a concordance measure called DIfferences between Smoothed COntact maps (GenomeDISCO) for assessing the similarity of a pair of contact maps obtained from chromosome conformation capture experiments. The key idea is to smooth contact maps using random walks on the contact map graph, before estimating concordance. We use simulated datasets to benchmark GenomeDISCO's sensitivity to different types of noise that affect chromatin contact maps. When applied to a large collection of Hi-C datasets, GenomeDISCO accurately distinguishes biological replicates from samples obtained from different cell types. GenomeDISCO also generalizes to other chromosome conformation capture assays, such as HiChIP. Availability and implementation Software implementing GenomeDISCO is available at https://github.com/kundajelab/genomedisco. Supplementary information Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
TL;DR: This work characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), to call inter- chromosomal translocations and their boundaries from HiCtrans, and to simulate hi-C data from genomes with desired rearrangements and abnormalities (AveSim) to benchmark the accuracy of the methods.
Abstract: Motivation Eukaryotic chromosomes adapt a complex and highly dynamic three-dimensional (3D) structure, which profoundly affects different cellular functions and outcomes including changes in epigenetic landscape and in gene expression. Making the scenario even more complex, cancer cells harbor chromosomal abnormalities [e.g. copy number variations (CNVs) and translocations] altering their genomes both at the sequence level and at the level of 3D organization. High-throughput chromosome conformation capture techniques (e.g. Hi-C), which are originally developed for decoding the 3D structure of the chromatin, provide a great opportunity to simultaneously identify the locations of genomic rearrangements and to investigate the 3D genome organization in cancer cells. Even though Hi-C data has been used for validating known rearrangements, computational methods that can distinguish rearrangement signals from the inherent biases of Hi-C data and from the actual 3D conformation of chromatin, and can precisely detect rearrangement locations de novo have been missing. Results In this work, we characterize how intra and inter-chromosomal Hi-C contacts are distributed for normal and rearranged chromosomes to devise a new set of algorithms (i) to identify genomic segments that correspond to CNV regions such as amplifications and deletions (HiCnv), (ii) to call inter-chromosomal translocations and their boundaries (HiCtrans) from Hi-C experiments and (iii) to simulate Hi-C data from genomes with desired rearrangements and abnormalities (AveSim) in order to select optimal parameters for and to benchmark the accuracy of our methods. Our results on 10 different cancer cell lines with Hi-C data show that we identify a total number of 105 amplifications and 45 deletions together with 90 translocations, whereas we identify virtually no such events for two karyotypically normal cell lines. Our CNV predictions correlate very well with whole genome sequencing data among chromosomes with CNV events for a breast cancer cell line (r = 0.89) and capture most of the CNVs we simulate using Avesim. For HiCtrans predictions, we report evidence from the literature for 30 out of 90 translocations for eight of our cancer cell lines. Furthermore, we show that our tools identify and correctly classify relatively understudied rearrangements such as double minutes and homogeneously staining regions. Considering the inherent limitations of existing techniques for karyotyping (i.e. missing balanced rearrangements and those near repetitive regions), the accurate identification of CNVs and translocations in a cost-effective and high-throughput setting is still a challenge. Our results show that the set of tools we develop effectively utilize moderately sequenced Hi-C libraries (100-300 million reads) to identify known and de novo chromosomal rearrangements/abnormalities in well-established cancer cell lines. With the decrease in required number of cells and the increase in attainable resolution, we believe that our framework will pave the way towards comprehensive mapping of genomic rearrangements in primary cells from cancer patients using Hi-C. Availability and implementation CNV calling: https://github.com/ay-lab/HiCnv, Translocation calling: https://github.com/ay-lab/HiCtrans and Hi-C simulation: https://github.com/ay-lab/AveSim. Supplementary information Supplementary data are available at Bioinformatics online.

Journal ArticleDOI
TL;DR: High-resolution chromosome conformation capture and super-resolution imaging are used to study a 70 kb domain that includes the mouse α-globin regulatory locus and find that a tissue-specific self-interacting chromatin domain forms independently of enhancer-promoter interactions.
Abstract: Self-interacting chromatin domains encompass genes and their cis-regulatory elements; however, the three-dimensional form a domain takes, whether this relies on enhancer–promoter interactions, and the processes necessary to mediate the formation and maintenance of such domains, remain unclear. To examine these questions, here we use a combination of high-resolution chromosome conformation capture, a non-denaturing form of fluorescence in situ hybridisation and super-resolution imaging to study a 70 kb domain encompassing the mouse α-globin regulatory locus. We show that this region forms an erythroid-specific, decompacted, self-interacting domain, delimited by frequently apposed CTCF/cohesin binding sites early in terminal erythroid differentiation, and does not require transcriptional elongation for maintenance of the domain structure. Formation of this domain does not rely on interactions between the α-globin genes and their major enhancers, suggesting a transcription-independent mechanism for establishment of the domain. However, absence of the major enhancers does alter internal domain interactions. Formation of a loop domain therefore appears to be a mechanistic process that occurs irrespective of the specific interactions within.

Journal ArticleDOI
TL;DR: It is posited that chromosome folding may contribute to the maintenance of a robust epigenomic identity via the formation of spatial compartments like topologically-associating domains like topological-association domains.
Abstract: Recent progresses of genome-wide chromatin conformation capture techniques have shown that the genome is segmented into hierarchically organized spatial compartments. However, whether this non-random 3D organization only reflects or indeed contributes-and how-to the regulation of genome function remain to be elucidated. The observation in many species that 3D domains correlate strongly with the 1D epigenomic information along the genome suggests a dynamic coupling between chromatin organization and epigenetic regulation. Here, we posit that chromosome folding may contribute to the maintenance of a robust epigenomic identity via the formation of spatial compartments like topologically-associating domains. Using a novel theoretical framework, the living chromatin model, we show that 3D compartmentalization leads to the spatial colocalization of epigenome regulators, thus increasing their local concentration and enhancing their ability to spread an epigenomic signal at long-range. Interestingly, we find that the presence of 1D insulator elements, like CTCF, may contribute greatly to the stable maintenance of adjacent antagonistic epigenomic domains. We discuss the generic implications of our findings in the light of various biological contexts from yeast to human. Our approach provides a modular framework to improve our understanding and to investigate in details the coupling between the structure and function of chromatin.

Journal ArticleDOI
TL;DR: It is found that loss of pluripotency is accompanied by widespread gain of structural loops and this general architectural change correlates with enhanced binding of CTCF and cohesins and more pronounced insulation of contacts across chromatin boundaries in lineage-committed cells.
Abstract: Summary The genome of pluripotent stem cells adopts a unique three-dimensional architecture featuring weakly condensed heterochromatin and large nucleosome-free regions. Yet, it is unknown whether structural loops and contact domains display characteristics that distinguish embryonic stem cells (ESCs) from differentiated cell types. We used genome-wide chromosome conformation capture and super-resolution imaging to determine nuclear organization in mouse ESC and neural stem cell (NSC) derivatives. We found that loss of pluripotency is accompanied by widespread gain of structural loops. This general architectural change correlates with enhanced binding of CTCF and cohesins and more pronounced insulation of contacts across chromatin boundaries in lineage-committed cells. Reprogramming NSCs to pluripotency restores the unique features of ESC domain topology. Domains defined by the anchors of loops established upon differentiation are enriched for developmental genes. Chromatin loop formation is a pervasive structural alteration to the genome that accompanies exit from pluripotency and delineates the spatial segregation of developmentally regulated genes.

Journal ArticleDOI
TL;DR: The promises held by redesigning genomic regions to explore complex biological questions are illustrated by designing and engineering 144 kb of a yeast chromosome with regularly spaced restriction sites (Syn‐HiC design) and illustrated by tracking homologous chromosomes during meiotic prophase and capturing important features of their spatial reorganization.
Abstract: In chromosome conformation capture experiments (Hi‐C), the accuracy with which contacts are detected varies due to the uneven distribution of restriction sites along genomes. In addition, repeated sequences or homologous regions remain indistinguishable because of the ambiguities they introduce during the alignment of the sequencing reads. We addressed both limitations by designing and engineering 144 kb of a yeast chromosome with regularly spaced restriction sites (Syn‐HiC design). In the Syn‐HiC region, Hi‐C signal‐to‐noise ratio is enhanced and can be used to measure the shape of an unbiased distribution of contact frequencies, allowing to propose a robust definition of a Hi‐C experiment resolution. The redesigned region is also distinguishable from its native homologous counterpart in an otherwise isogenic diploid strain. As a proof of principle, we tracked homologous chromosomes during meiotic prophase in synchronized and pachytene‐arrested cells and captured important features of their spatial reorganization, such as chromatin restructuration into arrays of Rec8‐delimited loops, centromere declustering, individualization, and pairing. Overall, we illustrate the promises held by redesigning genomic regions to explore complex biological questions.

Journal ArticleDOI
TL;DR: The current knowledge of general genome organization is reviewed, followed by the importance of chromatin folding in gene regulation and two emerging models that offer explanations regarding how distal enhancers achieve transcriptional control of target genes in the 3D genome are introduced.
Abstract: The spatial organization of the genome is essential for the precise control of gene expression. Recent advances in sequencing and imaging technologies allow us to explore the 3D genome and its relationship to gene regulation at an unprecedented scale. In this review, we provide an overview of lessons learned from studying the chromatin structure and their implications in communications between gene promoters and distal cis-regulatory elements, such as enhancers. We first review the current knowledge of general genome organization, followed by the importance of chromatin folding in gene regulation. Next, we proceed to a brief survey of the recently developed chromosome conformation capture technologies, as well as most widely adopted read-outs from such data. We then introduce two emerging models that offer explanations regarding how distal enhancers achieve transcriptional control of target genes in the 3D genome. Last, we discuss the promising prospects of leveraging knowledge in chromatin spatial organization for studying complex diseases and traits.

Journal ArticleDOI
TL;DR: In mammalian cells, it is found that NHCCs are stable and occur as frequently as intra-chromosomal interactions, butNHCCs occur at farther spatial distance that could explain their lack of detection in Hi-C.

Journal ArticleDOI
16 Apr 2018-Genes
TL;DR: This review of recent findings related to genome architecture, factors regulating chromatin spatial organization, and how they change during cellular senescence and aging is summarized.
Abstract: Chromatin 3D structure is highly dynamic and associated with many biological processes, such as cell cycle progression, cellular differentiation, cell fate reprogramming, cancer development, cellular senescence, and aging. Recently, by using chromosome conformation capture technologies, tremendous findings have been reported about the dynamics of genome architecture, their associated proteins, and the underlying mechanisms involved in regulating chromatin spatial organization and gene expression. Cellular senescence and aging, which involve multiple cellular and molecular functional declines, also undergo significant chromatin structural changes, including alternations of heterochromatin and disruption of higher-order chromatin structure. In this review, we summarize recent findings related to genome architecture, factors regulating chromatin spatial organization, and how they change during cellular senescence and aging.

Journal ArticleDOI
TL;DR: Promoter capture Hi-C in colorectal cancer cells integrated with cancer genome and expression data identifies a noncoding, cis-regulatory element that is recurrently mutated in cancer, affecting ETV1 expression, cell viability and patient survival.
Abstract: Efforts are being directed to systematically analyze the non-coding regions of the genome for cancer-driving mutations1-6. cis-regulatory elements (CREs) represent a highly enriched subset of the non-coding regions of the genome in which to search for such mutations. Here we use high-throughput chromosome conformation capture techniques (Hi-C) for 19,023 promoter fragments to catalog the regulatory landscape of colorectal cancer in cell lines, mapping CREs and integrating these with whole-genome sequence and expression data from The Cancer Genome Atlas7,8. We identify a recurrently mutated CRE interacting with the ETV1 promoter affecting gene expression. ETV1 expression influences cell viability and is associated with patient survival. We further refine our understanding of the regulatory effects of copy-number variations, showing that RASL11A is targeted by a previously identified enhancer amplification1. This study reveals new insights into the complex genetic alterations driving tumor development, providing a paradigm for employing chromosome conformation capture to decipher non-coding CREs relevant to cancer biology.

Journal ArticleDOI
TL;DR: A maximum likelihood algorithm called 3DMax is introduced to construct the 3D structure of a chromosome from Hi-C data, which was consistent with fluorescent in situ hybridization experiments and existing knowledge about the organization of human chromosomes.
Abstract: The development of chromosomal conformation capture techniques, particularly, the Hi-C technique, has made the analysis and study of the spatial conformation of a genome an important topic in bioinformatics and computational biology. Aided by high-throughput next generation sequencing techniques, the Hi-C technique can generate genome-wide, large-scale intra- and inter-chromosomal interaction data capable of describing in details the spatial interactions within a genome. These data can be used to reconstruct 3D structures of chromosomes that can be used to study DNA replication, gene regulation, genome interaction, genome folding, and genome function. Here, we introduce a maximum likelihood algorithm called 3DMax to construct the 3D structure of a chromosome from Hi-C data. 3DMax employs a maximum likelihood approach to infer the 3D structures of a chromosome, while automatically re-estimating the conversion factor (α) for converting Interaction Frequency (IF) to distance. Our results show that the models generated by 3DMax from a simulated Hi-C dataset match the true models better than most of the existing methods. 3DMax is more robust to structural variability and noise. Compared on a real Hi-C dataset, 3DMax constructs chromosomal models that fit the data better than most methods, and it is faster than all other methods. The models reconstructed by 3DMax were consistent with fluorescent in situ hybridization (FISH) experiments and existing knowledge about the organization of human chromosomes, such as chromosome compartmentalization. 3DMax is an effective approach to reconstructing 3D chromosomal models. The results, and the models generated for the simulated and real Hi-C datasets are available here: http://sysbio.rnet.missouri.edu/bdm_download/3DMax/ . The source code is available here: https://github.com/BDM-Lab/3DMax . A short video demonstrating how to use 3DMax can be found here: https://youtu.be/ehQUFWoHwfo .

Journal ArticleDOI
TL;DR: Lollipop, a machine-learning framework, is presented, which predicts CTCF-mediated long-range interactions using genomic and epigenomic features and identifies other determinants of CTCf-mediated chromatin wiring, such as gene expression within the loops.
Abstract: The CCCTC-binding zinc-finger protein (CTCF)-mediated network of long-range chromatin interactions is important for genome organization and function. Although this network has been considered largely invariant, we find that it exhibits extensive cell-type-specific interactions that contribute to cell identity. Here, we present Lollipop, a machine-learning framework, which predicts CTCF-mediated long-range interactions using genomic and epigenomic features. Using ChIA-PET data as benchmark, we demonstrate that Lollipop accurately predicts CTCF-mediated chromatin interactions both within and across cell types, and outperforms other methods based only on CTCF motif orientation. Predictions are confirmed computationally and experimentally by Chromatin Conformation Capture (3C). Moreover, our approach identifies other determinants of CTCF-mediated chromatin wiring, such as gene expression within the loops. Our study contributes to a better understanding about the underlying principles of CTCF-mediated chromatin interactions and their impact on gene expression.