scispace - formally typeset
Search or ask a question

Showing papers on "Ecosystem published in 2009"


Journal ArticleDOI
TL;DR: In this paper, the authors use a spatially explicit modeling tool, integrated valuation of ecosystem services and tradeoffs (InVEST), to predict changes in ecosystem services, biodiversity conservation, and commodity production levels.
Abstract: Nature provides a wide range of benefits to people. There is increasing consensus about the importance of incorporating these “ecosystem services” into resource management decisions, but quantifying the levels and values of these services has proven difficult. We use a spatially explicit modeling tool, Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST), to predict changes in ecosystem services, biodiversity conservation, and commodity production levels. We apply InVEST to stakeholder-defined scenarios of land-use/land-cover change in the Willamette Basin, Oregon. We found that scenarios that received high scores for a variety of ecosystem services also had high scores for biodiversity, suggesting there is little tradeoff between biodiversity conservation and ecosystem services. Scenarios involving more development had higher commodity production values, but lower levels of biodiversity conservation and ecosystem services. However, including payments for carbon sequestration alleviates this tradeoff. Quantifying ecosystem services in a spatially explicit manner, and analyzing tradeoffs between them, can help to make natural resource decisions more effective, efficient, and defensible.

2,056 citations


Journal ArticleDOI
TL;DR: Responses constructed from experiments under controlled conditions showed that LMA varied strongly with light, temperature and submergence, moderately with CO2 concentration and nutrient and water stress, and marginally under most other conditions.
Abstract: Here, we analysed a wide range of literature data on the leaf dry mass per unit area (LMA). In nature, LMA varies more than 100-fold among species. Part of this variation (c. 35%) can be ascribed to differences between functional groups, with evergreen species having the highest LMA, but most of the variation is within groups or biomes. When grown in the same controlled environment, leaf succulents and woody evergreen, perennial or slow-growing species have inherently high LMA. Within most of the functional groups studied, high-LMA species show higher leaf tissue densities. However, differences between evergreen and deciduous species result from larger volumes per area (thickness). Response curves constructed from experiments under controlled conditions showed that LMA varied strongly with light, temperature and submergence, moderately with CO2 concentration and nutrient and water stress, and marginally under most other conditions. Functional groups differed in the plasticity of LMA to these gradients. The physiological regulation is still unclear, but the consequences of variation in LMA and the suite of traits interconnected with it are strong. This trait complex is an important factor determining the fitness of species in their environment and affects various ecosystem processes.

2,046 citations


Journal ArticleDOI
28 Aug 2009-Science
TL;DR: A meta-analysis of 89 restoration assessments in a wide range of ecosystem types across the globe indicates that ecological restoration increased provision of biodiversity and ecosystem services by 44 and 25%, respectively, however, values of both remained lower in restored versus intact reference ecosystems.
Abstract: Ecological restoration is widely used to reverse the environmental degradation caused by human activities. However, the effectiveness of restoration actions in increasing provision of both biodiversity and ecosystem services has not been evaluated systematically. A meta-analysis of 89 restoration assessments in a wide range of ecosystem types across the globe indicates that ecological restoration increased provision of biodiversity and ecosystem services by 44 and 25%, respectively. However, values of both remained lower in restored versus intact reference ecosystems. Increases in biodiversity and ecosystem service measures after restoration were positively correlated. Results indicate that restoration actions focused on enhancing biodiversity should support increased provision of ecosystem services, particularly in tropical terrestrial biomes.

1,355 citations


Journal ArticleDOI
23 Apr 2009-Nature
TL;DR: It is found that northeast China is a net source of CO2 to the atmosphere owing to overharvesting and degradation of forests, and southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery.
Abstract: Global terrestrial ecosystems absorbed carbon at a rate of 1-4 Pgyr-1 during the 1980s and 1990s, offsetting 10-60 per cent of the fossil-fuel emissions1,2. The regional patterns and causes of terrestrial carbon sources and sinks, however, remain uncertain. With increasing scientific and political interest in regional aspects of the global carbon cycle, there is a strong impetus to better understand the carbon balance of China. This is not only because China is the world's most populous country and the largest emitter of fossil-fuel CO2 into the atmosphere', but also because it has experienced regionally distinct land-use histories and climate trends, which together control the carbon budget of its ecosystems. Here we analyse the current terrestrial carbon balance of China and its driving mechanisms during the 1980s and 1990s using three different methods: biomass and soil carbon inventories extrapolated by satellite greenness measurements, ecosystem models and atmospheric inversions. The three methods produce similar estimates of a net carbon sink in the range of 0.19-0.26 Pg carbon (PgC) per year, which is smaller than that in the conterminous United States but comparable to that in geographic Europe. We find that northeast China is a net source of CO2 to the atmosphere owing to overharvesting and degradation of forests. By contrast, southern China accounts for more than 65 per cent of the carbon sink, which can be attributed to regional climate change, large-scale plantation programmes active since the 1980s and shrub recovery. Shrub recovery is identified as the most uncertain factor contributing to the carbon sink. Our data and model results together indicate that China's terrestrial ecosystems absorbed 28-37 per cent of its cumulated fossil carbon emissions during the 1980s and 1990s.

1,188 citations


Journal ArticleDOI
11 Sep 2009-Science
TL;DR: These rapid changes in terrestrial, freshwater, and marine systems, presage changes at lower latitudes that will affect natural resources, food production, and future climate buffering, and highlight areas of ecological research that deserve priority as the Arctic continues to warm.
Abstract: At the close of the Fourth International Polar Year, we take stock of the ecological consequences of recent climate change in the Arctic, focusing on effects at population, community, and ecosystem scales. Despite the buffering effect of landscape heterogeneity, Arctic ecosystems and the trophic relationships that structure them have been severely perturbed. These rapid changes may be a bellwether of changes to come at lower latitudes and have the potential to affect ecosystem services related to natural resources, food production, climate regulation, and cultural integrity. We highlight areas of ecological research that deserve priority as the Arctic continues to warm.

1,157 citations


Journal ArticleDOI
TL;DR: A meta-analysis of published data identifies robust patterns in the structure of belowground microbial and faunal communities at broad scales which may be explained by universal mechanisms that regulate belowground biota across biomes.
Abstract: Although belowground ecosystems have been studied extensively and soil biota play integral roles in biogeochemical processes, surprisingly we have a limited understanding of global patterns in belowground biomass and community structure. To address this critical gap, we conducted a meta-analysis of published data (> 1300 datapoints) to compare belowground plant, microbial and faunal biomass across seven of the major biomes on Earth. We also assembled data to assess biome-level patterns in belowground microbial community composition. Our analysis suggests that variation in microbial biomass is predictable across biomes, with microbial biomass carbon representing 0.6-1.1% of soil organic carbon (r(2) = 0.91) and 1-20% of total plant biomass carbon (r(2) = 0.42). Approximately 50% of total animal biomass can be found belowground and soil faunal biomass represents < 4% of microbial biomass across all biomes. The structure of belowground microbial communities is also predictable: bacterial community composition and fungal : bacterial gene ratios can be predicted reasonably well from soil pH and soil C : N ratios respectively. Together these results identify robust patterns in the structure of belowground microbial and faunal communities at broad scales which may be explained by universal mechanisms that regulate belowground biota across biomes.

939 citations


Journal ArticleDOI
10 Dec 2009-Nature
TL;DR: It is suggested that ecoenzymatic ratios reflect the equilibria between the elemental composition of microbial biomass and detrital organic matter and the efficiencies of microbial nutrient assimilation and growth.
Abstract: Biota can be described in terms of elemental composition, expressed as an atomic ratio of carbon:nitrogen:phosphorus (refs 1-3). The elemental stoichiometry of microoorganisms is fundamental for understanding the production dynamics and biogeochemical cycles of ecosystems because microbial biomass is the trophic base of detrital food webs. Here we show that heterotrophic microbial communities of diverse composition from terrestrial soils and freshwater sediments share a common functional stoichiometry in relation to organic nutrient acquisition. The activities of four enzymes that catalyse the hydrolysis of assimilable products from the principal environmental sources of C, N and P show similar scaling relationships over several orders of magnitude, with a mean ratio for C:N:P activities near 1:1:1 in all habitats. We suggest that these ecoenzymatic ratios reflect the equilibria between the elemental composition of microbial biomass and detrital organic matter and the efficiencies of microbial nutrient assimilation and growth. Because ecoenzymatic activities intersect the stoichiometric and metabolic theories of ecology, they provide a functional measure of the threshold at which control of community metabolism shifts from nutrient to energy flow.

917 citations


Journal ArticleDOI
02 Apr 2009-Nature
TL;DR: It is found that the stability of the net ecosystem denitrification in the face of salinity stress was strongly influenced by the initial evenness of the community, therefore, when communities are highly uneven, or there is extreme dominance by one or a few species, their functioning is less resistant to environmental stress.
Abstract: Owing to the present global biodiversity crisis, the biodiversity-stability relationship and the effect of biodiversity on ecosystem functioning have become major topics in ecology. Biodiversity is a complex term that includes taxonomic, functional, spatial and temporal aspects of organismic diversity, with species richness (the number of species) and evenness (the relative abundance of species) considered among the most important measures. With few exceptions (see, for example, ref. 6), the majority of studies of biodiversity-functioning and biodiversity-stability theory have predominantly examined richness. Here we show, using microbial microcosms, that initial community evenness is a key factor in preserving the functional stability of an ecosystem. Using experimental manipulations of both richness and initial evenness in microcosms with denitrifying bacterial communities, we found that the stability of the net ecosystem denitrification in the face of salinity stress was strongly influenced by the initial evenness of the community. Therefore, when communities are highly uneven, or there is extreme dominance by one or a few species, their functioning is less resistant to environmental stress. Further unravelling how evenness influences ecosystem processes in natural and humanized environments constitutes a major future conceptual challenge.

866 citations


Journal ArticleDOI
TL;DR: The cascading effects of rising temperatures and loss of ice and snow in the region are affecting, for example, water availability, biodiversity, biodiversity and ecosystem boundary shifts, and global feedbacks.
Abstract: The Greater Himalayas hold the largest mass of ice outside polar regions and are the source of the 10 largest rivers in Asia. Rapid reduction in the volume of Himalayan glaciers due to climate change is occurring. The cascading effects of rising temperatures and loss of ice and snow in the region are affecting, for example, water availability (amounts, seasonality), biodiversity (endemic species, predator-prey relations), ecosystem boundary shifts (tree-line movements, high-elevation ecosystem changes), and global feedbacks (monsoonal shifts, loss of soil carbon). Climate change will also have environmental and social impacts that will likely increase uncertainty in water supplies and agricultural production for human populations across Asia. A common understanding of climate change needs to be developed through regional and local-scale research so that mitigation and adaptation strategies can be identified and implemented. The challenges brought about by climate change in the Greater Himalayas can only be addressed through increased regional collaboration in scientific research and policy making.

774 citations


Journal ArticleDOI
TL;DR: It is concluded that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.
Abstract: Salt marshes are among the most abundant, fertile, and accessible coastal habitats on earth, and they provide more ecosystem services to coastal populations than any other environment. Since the Middle Ages, humans have manipulated salt marshes at a grand scale, altering species composition, distribution, and ecosystem function. Here, we review historic and contemporary human activities in marsh ecosystems—exploitation of plant products; conversion to farmland, salt works, and urban land; introduction of non-native species; alteration of coastal hydrology; and metal and nutrient pollution. Unexpectedly, diverse types of impacts can have a similar consequence, turning salt marsh food webs upside down, dramatically increasing top down control. Of the various impacts, invasive species, runaway consumer effects, and sea level rise represent the greatest threats to salt marsh ecosystems. We conclude that the best way to protect salt marshes and the services they provide is through the integrated approach of ecosystem-based management.

770 citations


Journal ArticleDOI
TL;DR: In this article, the authors describe the variability observed in wave attenuation provided by marshes, mangroves, seagrasses, and coral reefs and therefore also in coastal protection.
Abstract: Natural processes tend to vary over time and space, as well as between species. The ecosystem services these natural processes provide are therefore also highly variable. It is often assumed that ecosystem services are provided linearly (unvaryingly, at a steady rate), but natural processes are characterized by thresholds and limiting functions. In this paper, we describe the variability observed in wave attenuation provided by marshes, mangroves, seagrasses, and coral reefs and therefore also in coastal protection. We calculate the economic consequences of assuming coastal protection to be linear. We suggest that, in order to refine ecosystem-based management practices, it is essential that natural variability and cumulative effects be considered in the valuation of ecosystem services.

Journal ArticleDOI
TL;DR: In this article, the authors used field and laboratory measurements, geographic information systems, and simulation modeling to investigate the potential effects of accelerated sea-level rise on tidal marsh area and delivery of ecosystem ser- vices along the Georgia coast.
Abstract: We used field and laboratory measurements, geographic information systems, and simulation modeling to investigate the potential effects of accelerated sea-level rise on tidal marsh area and delivery of ecosystem ser- vices along the Georgia coast. Model simulations using the Intergovernmental Panel on Climate Change (IPCC) mean and maximum estimates of sea-level rise for the year 2100 suggest that salt marshes will decline in area by 20% and 45%, respectively. The area of tidal freshwater marshes will increase by 2% under the IPCC mean scenario, but will decline by 39% under the maximum scenario. Delivery of ecosystem services associated with productivity (macrophyte biomass) and waste treatment (nitrogen accumulation in soil, potential denitrification) will also decline. Our findings suggest that tidal marshes at the lower and upper salinity ranges, and their attendant delivery of ecosystem services, will be most affected by accelerated sea- level rise, unless geomorphic conditions (ie gradual increase in elevation) enable tidal freshwater marshes to migrate inland, or vertical accretion of salt marshes to increase, to compensate for accelerated sea-level rise.

Journal ArticleDOI
01 Feb 2009-Ecology
TL;DR: It is found that rates of carbon dioxide production from litter decomposition were dependent upon the microbial inoculum, with differences in the microbial community alone accounting for substantial variation in total carbon mineralized.
Abstract: A critical assumption underlying terrestrial ecosystem models is that soil microbial communities, when placed in a common environment, will function in an identical manner regardless of the composition of that community. Given high species diversity in microbial communities and the ability of microbes to adapt rapidly to new conditions, this assumption of functional redundancy seems plausible. We test the assumption by comparing litter decomposition rates in experimental microcosms inoculated with distinct microbial communities. We find that rates of carbon dioxide production from litter decomposition were dependent upon the microbial inoculum, with differences in the microbial community alone accounting for substantial (;20%) variation in total carbon mineralized. Communities that shared a common history with a given foliar litter exhibited higher decomposition rates when compared to communities foreign to that habitat. Our results suggest that the implicit assumption in ecosystem models (i.e., microbial communities in the same environment are functionally equivalent) is incorrect. To predict accurately how biogeochemical processes will respond to global change may require consideration of the community composition and/or adaptation of microbial communities to past resource environments.

Journal ArticleDOI
06 Nov 2009-Science
TL;DR: It is shown that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted.
Abstract: Human activities have more than doubled the amount of nitrogen (N) circulating in the biosphere. One major pathway of this anthropogenic N input into ecosystems has been increased regional deposition from the atmosphere. Here we show that atmospheric N deposition increased the stoichiometric ratio of N and phosphorus (P) in lakes in Norway, Sweden, and Colorado, United States, and, as a result, patterns of ecological nutrient limitation were shifted. Under low N deposition, phytoplankton growth is generally N-limited; however, in high-N deposition lakes, phytoplankton growth is consistently P-limited. Continued anthropogenic amplification of the global N cycle will further alter ecological processes, such as biogeochemical cycling, trophic dynamics, and biological diversity, in the world's lakes, even in lakes far from direct human disturbance.

Journal ArticleDOI
TL;DR: The requirements of freshwater organisms should be taken into account in the future delineation of protected areas and in the estimation of the degree to which protected areas accommodate freshwater biodiversity in the changing climate and associated environmental changes.
Abstract: Current rates of climate change are unprecedented, and biological responses to these changes have also been rapid at the levels of ecosystems, communities, and species. Most research on climate change effects on biodiversity has concentrated on the terrestrial realm, and considerable changes in terrestrial biodiversity and species' distributions have already been detected in response to climate change. The studies that have considered organisms in the freshwater realm have also shown that freshwater biodiversity is highly vulnerable to climate change, with extinction rates and extirpations of freshwater species matching or exceeding those suggested for better-known terrestrial taxa. There is some evidence that freshwater species have exhibited range shifts in response to climate change in the last millennia, centuries, and decades. However, the effects are typically species-specific, with cold-water organisms being generally negatively affected and warm-water organisms positively affected. However, detected range shifts are based on findings from a relatively low number of taxonomic groups, samples from few freshwater ecosystems, and few regions. The lack of a wider knowledge hinders predictions of the responses of much of freshwater biodiversity to climate change and other major anthropogenic stressors. Due to the lack of detailed distributional information for most freshwater taxonomic groups and the absence of distribution-climate models, future studies should aim at furthering our knowledge about these aspects of the ecology of freshwater organisms. Such information is not only important with regard to the basic ecological issue of predicting the responses of freshwater species to climate variables, but also when assessing the applied issue of the capacity of protected areas to accommodate future changes in the distributions of freshwater species. This is a huge challenge, because most current protected areas have not been delineated based on the requirements of freshwater organisms. Thus, the requirements of freshwater organisms should be taken into account in the future delineation of protected areas and in the estimation of the degree to which protected areas accommodate freshwater biodiversity in the changing climate and associated environmental changes.

Journal ArticleDOI
Jan Karlsson1, Pär Byström1, Jenny Ask1, Per Ask1, Lennart Persson1, Mats Jansson1 
23 Jul 2009-Nature
TL;DR: It is proposed that a large share of the world’s unproductive lakes, within natural variations of organic carbon and nutrient input, are limited by light and not by nutrients, which is inconsistent with the idea that nutrient supply primarily controls lake productivity.
Abstract: Productivity denotes the rate of biomass synthesis in ecosystems and is a fundamental characteristic that frames ecosystem function and management. Limitation of productivity by nutrient availabili ...

Journal ArticleDOI
TL;DR: In this paper, a field experiment was conducted to examine responses of total soil and microbial respiration, and microbial biomass to experimental warming and increased precipitation in a semiarid temperate steppe in northern China since April 2005.
Abstract: Climate change can profoundly impact carbon (C) cycling of terrestrial ecosystems. A field experiment was conducted to examine responses of total soil and microbial respiration, and microbial biomass to experimental warming and increased precipitation in a semiarid temperate steppe in northern China since April 2005. We measured soil respiration twice a month over the growing seasons, soil microbial biomass C (MBC) and N (MBN), microbial respiration (MR) once a year in the middle growing season from 2005 to 2007. The results showed that interannual variations in soil respiration, MR, and microbial biomass were positively related to interannual fluctuations in precipitation. Laboratory incubation with a soil moisture gradient revealed a constraint of the temperature responses of MR by low soil moisture contents. Across the 3 years, experimental warming decreased soil moisture, and consequently caused significant reductions in total and microbial respiration, and microbial biomass, suggesting stronger negatively indirect effects through warming-induced water stress than the positively direct effects of elevated temperature. Increased evapotranspiration under experimental warming could have reduced soil water availability below a stress threshold, thus leading to suppression of plant growth, root and microbial activities. Increased precipitation significantly stimulated total soil and microbial respiration and all other microbial parameters and the positive precipitation effects increased over time. Our results suggest that soil water availability is more important than temperature in regulating soil and microbial respiratory processes, microbial biomass and their responses to climate change in the semiarid temperate steppe. Experimental warming caused greater reductions in soil respiration than in gross ecosystem productivity (GEP). In contrast, increased precipitation stimulated GEP more than soil respiration. Our observations suggest that climate warming may cause net C losses, whereas increased precipitation may lead to net C gains in the semiarid temperate steppe. Our findings highlight that unless there is concurrent increase in precipitation, the temperate steppe in the arid and semiarid regions of northern China may act as a net C source under climate warming.

Journal ArticleDOI
TL;DR: Investigation of how community composition and size of selected functional guilds in the nitrogen cycle correlated with agroecosystem functioning found differences in size, rather than composition, correlated with differences in process rates for the denitrifier and ammonia-oxidizing archaeal and total bacterial communities.
Abstract: The relative importance of size and composition of microbial communities in ecosystem functioning is poorly understood. Here, we investigated how community composition and size of selected functional guilds in the nitrogen cycle correlated with agroecosystem functioning, which was defined as microbial process rates, total crop yield and nitrogen content in the crop. Soil was sampled from a 50-year fertilizer trial and the treatments comprised unfertilized bare fallow, unfertilized with crop, and plots with crop fertilized with calcium nitrate, ammonium sulfate, solid cattle manure or sewage sludge. The size of the functional guilds and the total bacterial community were greatly affected by the fertilization regimes, especially by the sewage sludge and ammonium sulfate treatments. The community size results were combined with previously published data on the composition of the corresponding communities, potential ammonia oxidation, denitrification, basal and substrate-induced respiration rates, in addition to crop yield for an integrated analysis. It was found that differences in size, rather than composition, correlated with differences in process rates for the denitrifier and ammonia-oxidizing archaeal and total bacterial communities, whereas neither differences in size nor composition was correlated with differences in process rates for the ammonia-oxidizing bacterial community. In contrast, the composition of nitrate-reducing, denitrifying and total bacterial communities co-varied with primary production and both were strongly linked to soil properties.

Journal ArticleDOI
TL;DR: The current status of groundwater microbial biodiversity research with a focus on Bacteria and Archaea is reviewed and on the prospects of modern techniques for enhancing the authors' understanding of microbial biodiversity patterns and their relation to environmental conditions is reviewed.
Abstract: Summary 1. Groundwater ecosystems offer vast and complex habitats for diverse microbial communities. Here we review the current status of groundwater microbial biodiversity research with a focus on Bacteria and Archaea and on the prospects of modern techniques for enhancing our understanding of microbial biodiversity patterns and their relation to environmental conditions. 2. The enormous volume of the saturated terrestrial underground forms the largest habitat for microorganisms on earth. Up to 40% of prokaryotic biomass on earth is hidden within this terrestrial subsurface. Besides representing a globally important pool of carbon and nutrients in organisms, these communities harbour a degree of microbial diversity only marginally explored to date. 3. Although first observations of groundwater microbiota date back to Antonie van Leeuwenhoek in 1677, the systematic investigation of groundwater microbial biodiversity has gained momentum only within the last few decades. These investigations were initiated by an increasing awareness of the importance of aquifer microbiota for ecosystem services and functioning, including the provision of drinking water and the degradation of contaminants. 4. The development of sampling techniques suitable for microbiological investigations as well as the application of both cultivation-based and molecular methods has yielded substantial insights into microbial communities in contaminated aquifers, whereas knowledge of microbial biodiversity in pristine habitats is still poor at present. 5. Several novel phylogenetic lineages have been described from groundwater habitats, but to date no clearly ‘endemic’ subsurface microbial phyla have been identified. The future will show if the rather low diversity generally found in pristine oligotrophic aquifers is a fact or just a result of low abundances and insufficient resolution of today’s methods. Refined approaches complemented by statistically rigorous applications of biodiversity estimates are urgently needed. 6. Factors identified to control microbial diversity in aquifers include spatial heterogeneity, temporal variability and disturbances such as pollution with chemical anthropogenic contaminants. Although first insights into the importance of individual biogeochemical processes may be obtained from surveys of microbial diversity within functional groups, direct links to groundwater ecosystem functioning have rarely been established so far.

Journal ArticleDOI
TL;DR: A meta-analytic synthesis shows a significant overall effect of enemy richness increasing top-down control of herbivores, which is consistent in agricultural studies conducted in tropical versus temperate zones, in studies using caged versus open-field designs, but not so in nonagricultural habitats.
Abstract: Claims about the role of predator diversity in maintaining ecosystem function and providing ecosystem services such as pest control are controversial, but evaluative tests are beginning to accumulate. Empirical and experimental comparisons of species-rich versus species-poor assemblages of entomophagous arthropods and vertebrates range from strong suppression to facilitative release of herbivorous arthropod prey. Top-down control can be strengthened when natural enemies complement each other, dampened by negative interactions, balanced by both factors, and driven by single influential species. A meta-analytic synthesis shows a significant overall effect of enemy richness increasing top-down control of herbivores, which is consistent in agricultural studies conducted in tropical versus temperate zones, in studies using caged versus open-field designs, but not so in nonagricultural habitats. Synthetic analyses address theory and help set precautionary policy for conserving ecological services broadly, while characterizing uncertainty associated with herbivore response to changes in enemy diversity.

Journal ArticleDOI
01 Dec 2009-Ecology
TL;DR: The hierarchical-response framework is explicitly comparative to better understand differential sensitivities of ecosystems, and it can be used to guide the design of coordinated, cross-site experiments to enable more robust forecasts of contemporary and future ecosystem dynamics.
Abstract: In contrast to pulses in resource availability following disturbance events, many of the most pressing global changes, such as elevated atmospheric carbon dioxide concentrations and nitrogen deposition, lead to chronic and often cumulative alterations in available resources. Therefore, predicting ecological responses to these chronic resource alterations will require the modification of existing disturbance-based frameworks. Here, we present a conceptual framework for assessing the nature and pace of ecological change under chronic resource alterations. The "hierarchical-response framework" (HRF) links well-documented, ecological mechanisms of change to provide a theoretical basis for testing hypotheses to explain the dynamics and differential sensitivity of ecosystems to chronic resource alterations. The HRF is based on a temporal hierarchy of mechanisms and responses beginning with individual (physiological/metabolic) responses, followed by species reordering within communities, and finally species loss and immigration. Each mechanism is hypothesized to differ in the magnitude and rate of its effects on ecosystem structure and function, with this variation depending on ecosystem attributes, such as longevity of dominant species, rates of biogeochemical cycling, levels of biodiversity, and trophic complexity. Overall, the HRF predicts nonlinear changes in ecosystem dynamics, with the expectation that interactions with natural disturbances and other global-change drivers will further alter the nature and pace of change. The HRF is explicitly comparative to better understand differential sensitivities of ecosystems, and it can be used to guide the design of coordinated, cross-site experiments to enable more robust forecasts of contemporary and future ecosystem dynamics.

Journal ArticleDOI
TL;DR: The results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.
Abstract: Plant diversity is predicted to be positively linked to the diversity of herbivores and predators in a foodweb. Yet, the relationship between plant and animal diversity is explained by a variety of competing hypotheses, with mixed empirical results for each hypothesis. We sampled arthropods for over a decade in an experiment that manipulated the number of grassland plant species. We found that herbivore and predator species richness were strongly, positively related to plant species richness, and that these relationships were caused by different mechanisms at herbivore and predator trophic levels. Even more dramatic was the threefold increase, from low- to high-plant species richness, in abundances of predatory and parasitoid arthropods relative to their herbivorous prey. Our results demonstrate that, over the long term, the loss of plant species propagates through food webs, greatly decreasing arthropod species richness, shifting a predator-dominated trophic structure to being herbivore dominated, and likely impacting ecosystem functioning and services.

Journal ArticleDOI
24 Dec 2009-Nature
TL;DR: Streamwater DOM is characterized from 11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage and the bioavailability of DOM to marine microorganisms is significantly correlated with increasing 14C age, indicating that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems.
Abstract: Riverineorganicmattersupportsoftheorderofone-fifthofestuarine metabolism 1 . Coastal ecosystems are therefore sensitive to alteration of both the quantity and lability of terrigenous dissolved organic matter (DOM) delivered by rivers. The lability of DOM is thought to vary with age, with younger, relatively unaltered organic matter being more easily metabolized by aquatic heterotrophs than older, heavily modified material 2–4 . This view is developed exclusively from workinwatershedswhereterrestrialplantandsoilsourcesdominate streamwaterDOM.Here wecharacterize streamwaterDOMfrom11 coastal watersheds on the Gulf of Alaska that vary widely in glacier coverage (0–64 per cent). In contrast to non-glacial rivers, we find that the bioavailability of DOM to marine microorganisms is significantlycorrelatedwithincreasing 14 Cage.Moreover,themostheavily glaciated watersheds are the source of the oldest ( 4kyr 14 C age) and mostlabile(66percentbioavailable)DOM.Theseglacialwatersheds haveextreme runoffrates,inpart becausetheyare subject tosomeof the highest rates of glacier volume loss on Earth 5 .W e estimate the cumulative flux of dissolved organic carbon derived from glaciers contributing runoff to the Gulf of Alaska at 0.13 60.01Tgyr 21 (1Tg 510 12 g), of which 0.10Tg is highly labile. This indicates that glacial runoff is a quantitatively important source of labile reduced carbon to marine ecosystems. Moreover, because glaciers and ice sheets represent the second largest reservoir of water in the global hydrologic system, our findings indicate that climatically driven changes in glacier volume could alter the age, quantity and reactivity of DOM entering coastal oceans. Biogeochemicalcycling in coastal marginsnear riverine outflows is dominated by the influx of terrestrial organic matter and nutrients. The effect of anthropogenic increases in nutrient export on sensitive systemsiswell-documentedinregionssuchastheGulfofMexicozone of hypoxia 6 . It is much less clear how climate-induced shifts in the exportofterrigenousDOMwillaffectcoastalenvironments,although the reactivity of this carbon will be key as the extent of its incorporationintomarinefoodwebsdependslargelyonitschemicalcharacter 7 .

01 Jan 2009
TL;DR: In this paper, the authors used soil microcosms to show that functional dissimilarity among detritivorous species, not species number, drives community compositional effects on leaf litter mass loss and soil respiration, two key soil ecosystem processes.
Abstract: The loss of biodiversity can have significant impacts on ecosystem functioning, but the mechanisms involved lack empirical confirmation. Using soil microcosms, we show experimentally that functional dissimilarity among detritivorous species, not species number, drives community compositional effects on leaf litter mass loss and soil respiration, two key soil ecosystem processes. These experiments confirm theoretical predictions that biodiversity effects on ecosystem functioning can be predicted by the degree of functional differences among species.

Journal ArticleDOI
TL;DR: In this article, a constrained implementation of a new structured TBM, the Ecosystem Demography model version 2 (ED2), which explicitly tracks the dynamics of fine-scale ecosystem structure and function is presented.
Abstract: [1] Insights into how terrestrial ecosystems affect the Earth’s response to changes in climate and rising atmospheric CO2 levels rely heavily on the predictions of terrestrial biosphere models (TBMs). These models contain detailed mechanistic representations of biological processes affecting terrestrial ecosystems; however, their ability to simultaneously predict field-based measurements of terrestrial vegetation dynamics and carbon fluxes has remained largely untested. In this study, we address this issue by developing a constrained implementation of a new structured TBM, the Ecosystem Demography model version 2 (ED2), which explicitly tracks the dynamics of fine-scale ecosystem structure and function. Carbon and water flux measurements from an eddy-flux tower are used in conjunction with forest inventory measurements of tree growth and mortality at Harvard Forest (42.5N, 72.1W) to estimate a number of important but weakly constrained model parameters. Evaluation against a decade of tower flux and forest dynamics measurements shows that the constrained ED2 model yields greatly improved predictions of annual net ecosystem productivity, carbon partitioning, and growth and mortality dynamics of both hardwood and conifer trees. The generality of the model formulation is then evaluated by comparing the model’s predictions against measurements from two other eddy-flux towers and forest inventories of the northeastern United States and Quebec. Despite the markedly different composition throughout this region, the optimized model realistically predicts observed patterns of carbon fluxes and tree growth. These results demonstrate how TBMs parameterized with field-based measurements can provide quantitative insight into the underlying biological processes governing ecosystem composition, structure, and function at larger scales.

Journal ArticleDOI
TL;DR: A leaky nitrostat model is proposed that is capable of resolving the paradox at scales of both ecosystems and individual N-fixing organisms.
Abstract: Observations of the tropical nitrogen (N) cycle over the past half century indicate that intact tropical forests tend to accumulate and recycle large quantities of N relative to temperate forests, as evidenced by plant and soil N to phosphorus (P) ratios, by P limitation of plant growth in some tropical forests, by an abundance of N-fixing plants, and by sustained export of bioavailable N at the ecosystem scale. However, this apparent up-regulation of the ecosystem N cycle introduces a biogeochemical paradox when considered from the perspective of physiology and evolution of individual plants: The putative source for tropical N richness—symbiotic N fixation—should, in theory, be physiologically down-regulated as internal pools of bioavailable N build. We review the evidence for tropical N richness and evaluate several hypotheses that may explain its emergence and maintenance. We propose a leaky nitrostat model that is capable of resolving the paradox at scales of both ecosystems and individual N-fixing organisms.

Journal ArticleDOI
TL;DR: In this article, half-hourly measurements of the net exchanges of carbon dioxide and water vapor between terrestrial ecosystems and the atmosphere provide estimates of gross primary production (GPP) and evapotranspiration (ET) at the ecosystem level and on daily to annual timescales.
Abstract: Half-hourly measurements of the net exchanges of carbon dioxide and water vapor between terrestrial ecosystems and the atmosphere provide estimates of gross primary production (GPP) and evapotranspiration (ET) at the ecosystem level and on daily to annual timescales. The ratio of these quantities represents ecosystem water use efficiency. Its multiplication with mean daylight vapor pressure deficit (VPD) leads to a quantity which we call “inherent water use efficiency” (IWUE*). The dependence of IWUE* on environmental conditions indicates possible adaptive adjustment of ecosystem physiology in response to a changing environment. IWUE* is analyzed for 43 sites across a range of plant functional types and climatic conditions. IWUE* increases during short-term moderate drought conditions. Mean annual IWUE* varied by a factor of 3 among all sites. This is partly explained by soil moisture at field capacity, particularly in deciduous broad-leaved forests. Canopy light interception sets the upper limits to canopy photosynthesis, and explains half the variance in annual IWUE* among herbaceous ecosystems and evergreen needle-leaved forests. Knowledge of IWUE* offers valuable improvement to the representation of carbon and water coupling in ecosystem process models

Book
18 Jan 2009
TL;DR: In this paper, the authors present an overview of the role of trees in terrestrial ecosystems and their relationship with other biological properties, such as carbon dioxide, nitrogen, and seawater.
Abstract: Preface.- 1. Introduction.- 2. Trees and Canopies. 2.1 Introduction. 2.2 Biomass Allocation. 2.2.1 Partitioning of Tree Components. 2.2.2 Global Patterns of Mangrove Biomass. 2.2.3 Nutrient Capital. 2.3 Ecophysiology. 2.3.1 Anoxia. 2.3.2 Salt. 2.3.3 Balancing Carbon Gain and Water Loss. 2.4 Tree Photosynthesis and Respiration. 2.4.1 Photosynthetic Rates. 2.4.2 Respiration. 2.5 Primary Productivity. 2.5.1 Methods and Their Limitations. 2.5.2 Carbon Allocation of Primary Productivity. 2.5.3 Rates and Patterns of Net Primary Productivity. 2.5.4 Nutrient Limitation and Nutrient-Use Efficiency. 2.5.5 Other Primary Producers. 2.6 Life in the Canopy and Root Epibionts.-3. Water and Sediment Dynamics. 3.1 Introduction. 3.2 Tides. 3.2.1 Flow in Relation to Geomorphology. 3.2.2 Flow in Relation to Vegetation and other Biological Structures. 3.3 Groundwater. 3.4 Waves. 3.5 Sediment Transport and Flocculation. 3.6 Sedimentation and Accretion: Short-Term versus Long-Term Dynamics. 3.7 Chemical and Biological Consequences of Water and Sediment Flow.- 4. Life in Tidal Waters. 4.1 Introduction. 4.2 Physicochemical and Biochemical Attributes. 4.3 Loops, Chains, and Hubs in the Microbial Machinery. 4.4 Phytoplankton Dynamics. 4.5 Are Mangrove Waters Net Heterotrophic or Autotrophic? 4.6 Zooplankton. 4.6.1 Factors Affecting Abundance, Composition, and Biomass. 4.6.2 Diets and Grazing Rates. 4.6.3 Secondary Production. 4.7 Nekton: Diets, Growth, and Trophic Links. 4.7.1 Penaeid Shrimps. 4.7.2 Fish. 4.8 Is There a Link between Mangroves and Fisheries Production?- 5. The Forest Floor. 5.1 Introduction. 5.2 Soil Composition and Physicochemical Attributes. 5.3 Life on the Forest Floor. 5.3.1 The Role of Crabs in Consumption of Seeds and Litter. 5.3.2 Patterns of Microbial Decomposition of Litter. 5.3.3 Crabs as Ecosystem Engineers. 5.3.4 Trophic Dynamics of Other Macrobenthos. 5.3.5 Wood Decomposition. 5.3.6 Root Decomposition. 5.4 Microbial Processes in Forest Soils. 5.4.1 Rates and Pathways of Bacterial Decomposition of Soil Organic Matter. 5.4.2 Sulfate Reduction. 5.4.3 Iron and Manganese Reduction. 5.4.4 Methane Release. 5.4.5 Nitrogen Processes and Links to Trees. 5.4.6 Aspects of Phosphorus Cycling.- 6. Ecosystem Dynamics. 6.1 Introduction. 6.2 Material Exchange: The Outwelling Concept. 6.2.1 Carbon Export to the Coastal Ocean and the Atmosphere. 6.2.2 Dissolved Nitrogen and Phosphorus Exchange. 6.3 Carbon Balance in Mangrove Ecosystems. 6.3.1 Whole-Ecosystem Balances. 6.3.2 The Mass Balance Approach. 6.4 Nitrogen Flow through Mangrove Ecosystems: The Hinchinbrook Island Study. 6.5 Mineral Cycling. 6.6 Systems Analysis: Understanding links among Various Functions of an Eosytem. 6.6.1 Network Models. 6.6.2 Ecohydrology: Linking Physics and Ecology for Management Applications. 6.7 Ecological Economics and Sustainability of Mangroves. 6.7.1 Models of Resource Economics. 6.7.2 Using Ecosystems Data to Quantify Sustainability.- 7. Synthesis. 7.1 Developing A Global View. 7.1.1 A Budget and its Implications. 7.1.2 The Contribution of Mangroves to Carbon Cycling in the Global Coastal Ocean. 7.2 The Most Important Facts regarding Mangrove Energetics. 7.3 Epilogue.- References. Index

Journal ArticleDOI
TL;DR: The capacity of ecosystems to deliver essential services to society is already under stress due to climate change, and the additional stresses imposed by climate change in the coming years will require extraordinary adaptation.

Journal ArticleDOI
TL;DR: The presence of S. alterniflora had great competitive effects on native species, including Scirpus mariqueter and Phragmites australis, and could potentially exclude the natives locally, and invasions increased the primary productivity of the invaded ecosystems, and altered carbon and nitrogen cycling processes.