scispace - formally typeset
Search or ask a question

Showing papers on "Glutathione published in 2006"


Journal ArticleDOI
TL;DR: This review examines the evidence for involvement of the oxidative stress in the carcinogenesis process and the role of enzymatic and non-enzymatic antioxidants in the process of carcinogenesis as well as the antioxidant interactions with various regulatory factors.

5,937 citations


Journal ArticleDOI
TL;DR: The spectrophotometric/microplate reader assay method for glutathione (GSH) can assay GSH in whole blood, plasma, serum, lung lavage fluid, cerebrospinal fluid, urine, tissues and cell extracts and can be extended for drug discovery/pharmacology and toxicology protocols to study the effects of drugs and toxic compounds on glutATHione metabolism.
Abstract: The spectrophotometric/microplate reader assay method for glutathione (GSH) involves oxidation of GSH by the sulfhydryl reagent 5,5'-dithio-bis(2-nitrobenzoic acid) (DTNB) to form the yellow derivative 5'-thio-2-nitrobenzoic acid (TNB), measurable at 412 nm. The glutathione disulfide (GSSG) formed can be recycled to GSH by glutathione reductase in the presence of NADPH. The assay is composed of two parts: the preparation of cell cytosolic/tissue extracts and the detection of total glutathione (GSH and GSSG). The method is simple, convenient, sensitive and accurate. The lowest detection for GSH and GSSG is 0.103 nM in a 96-well plate. This method is rapid and the whole procedure takes no longer than 15 min including reagent preparation. The method can assay GSH in whole blood, plasma, serum, lung lavage fluid, cerebrospinal fluid, urine, tissues and cell extracts and can be extended for drug discovery/pharmacology and toxicology protocols to study the effects of drugs and toxic compounds on glutathione metabolism.

1,731 citations


Journal ArticleDOI
Dean P. Jones1
TL;DR: From a mechanistic standpoint, oxidative stress may be better defined as a disruption of redox signaling and control and adoption of such a definition could redirect research to identify key perturbations of red Oxidative stress-related disease processes and lead to new treatments for oxidative stressed disease processes.
Abstract: Oxidative stress is often defined as an imbalance of pro-oxidants and antioxidants, which can be quantified in humans as the redox state of plasma GSH/GSSG. Plasma GSH redox in humans becomes oxidized with age, in response to oxidative stress (chemotherapy, smoking), and in common diseases (type 2 diabetes, cardiovascular disease). However, data also show that redox of plasma GSH/GSSG is not equilibrated with the larger plasma cysteine/cystine (Cys/CySS) pool, indicating that the "balance" of pro-oxidants and antioxidants cannot be defined by a single entity. The major cellular thiol/disulfide systems, including GSH/GSSG, thioredoxin- 1 (-SH2/-SS-), and Cys/CySS, are not in redox equilibrium and respond differently to chemical toxicants and physiologic stimuli. Individual signaling and control events occur through discrete redox pathways rather than through mechanisms that are directly responsive to a global thiol/disulfide balance such as that conceptualized in the common definition of oxidative stress. ...

1,438 citations


Journal ArticleDOI
TL;DR: Exposure to SiO(2) nanoparticles results in a dose-dependent cytotoxicity in cultural human bronchoalveolar carcinoma-derived cells that is closely correlated to increased oxidative stress.

812 citations


Journal ArticleDOI
TL;DR: It is demonstrated here the effective delivery of a dye payload into cells using 2-nm core gold nanoparticles, with release occurring via place exchange of glutathione onto the particle surface.
Abstract: We demonstrate here the effective delivery of a dye payload into cells using 2-nm core gold nanoparticles, with release occurring via place exchange of glutathione onto the particle surface. In vitro experiments demonstrate effective release of drug analogues upon addition of glutathione. Cell culture experiments show rapid uptake of nanoparticle and effective release of payload. The role of glutathione in the release process was demonstrated through improved payload release upon transient increase in glutathione levels achieved via introduction of glutathione ethyl ester into the cell.

781 citations


Journal ArticleDOI
TL;DR: A metabolome differential display method based on capillary electrophoresis time-of-flight mass spectrometry to profile liver metabolites following acetaminophen-induced hepatotoxicity finds that serum ophthalmate is a sensitive indicator of hepatic GSH depletion, and may be a new biomarker for oxidative stress.

655 citations


Journal ArticleDOI
TL;DR: In this paper, the authors show that training can have positive or negative effects on oxidative stress depending on training load, training specificity and the basal level of training, which may lead to overtraining.
Abstract: Free radicals are reactive compounds that are naturally produced in the human body. They can exert positive effects (e.g. on the immune system) or negative effects (e.g. lipids, proteins or DNA oxidation). To limit these harmful effects, an organism requires complex protection - the antioxidant system. This system consists of antioxidant enzymes (catalase, glutathione peroxidase, superoxide dismutase) and non-enzymatic antioxidants (e.g. vitamin E [tocopherol], vitamin A [retinol], vitamin C [ascorbic acid], glutathione and uric acid). An imbalance between free radical production and antioxidant defence leads to an oxidative stress state, which may be involved in aging processes and even in some pathology (e.g. cancer and Parkinson's disease). Physical exercise also increases oxidative stress and causes disruptions of the homeostasis. Training can have positive or negative effects on oxidative stress depending on training load, training specificity and the basal level of training. Moreover, oxidative stress seems to be involved in muscular fatigue and may lead to overtraining.

648 citations


Journal ArticleDOI
TL;DR: Increases in oxidative stress with membrane lipid abnormalities, inflammation, aberrant immune response, impaired energy metabolism and excitotoxicity, leading to clinical symptoms and pathogenesis of autism is proposed.

569 citations


Journal ArticleDOI
TL;DR: The emerging concept of protein-S-thiolation, protein- S-nitrosation and protein-SH (formation of sulfenic, sulfinic and sulfonic acids) in redox signaling during normal physiology and under oxidative stress in controlling the cellular processes is discussed.

556 citations


Journal ArticleDOI
TL;DR: Analysis of reactive oxygen species (ROS) and nitric oxide (NO) levels by fluorescence and confocal laser microscopy showed an over-accumulation of O2*- and H2O2, and a reduction in the NO content in lateral and principal roots, which could regulate the cellular response to cope with damages imposed by cadmium.
Abstract: Growth of pea (Pisum sativum L.) plants with 50 microM CdCl2 for 15 d produced a reduction in the number and length of lateral roots, and changes in structure of the principal roots affecting the xylem vessels. Cadmium induced a reduction in glutathione (GSH) and ascorbate (ASC) contents, and catalase (CAT), GSH reductase (GR) and guaiacol peroxidase (GPX) activities. CuZn-superoxide dismutase (SOD) activity was also diminished by the Cd treatment, although Mn-SOD was slightly increased. CAT and CuZn-SOD were down-regulated at transcriptional level, while Mn-SOD, Fe-SOD and GR were up-regulated. Analysis of reactive oxygen species (ROS) and nitric oxide (NO) levels by fluorescence and confocal laser microscopy (CLM) showed an over-accumulation of O2*- and H2O2, and a reduction in the NO content in lateral and principal roots. ROS overproduction was dependent on changes in intracellular Ca+2 content, and peroxidases and NADPH oxidases were involved. Cadmium also produced an increase in salicylic acid (SA), jasmonic acid (JA) and ethylene (ET) contents. The rise of ET and ROS, and the NO decrease are in accordance with senescence processes induced by Cd, and the increase of JA and SA could regulate the cellular response to cope with damages imposed by cadmium.

515 citations


Journal ArticleDOI
TL;DR: The results suggest that ATGPX3 might play dual and distinctive roles in H2O2 homeostasis, acting as a general scavenger and specifically relaying the H 2O2 signal as an oxidative signal transducer in ABA and drought stress signaling.
Abstract: We isolated two T-DNA insertion mutants of Arabidopsis thaliana GLUTATHIONE PEROXIDASE3 (ATGPX3) that exhibited a higher rate of water loss under drought stress, higher sensitivity to H2O2 treatment during seed germination and seedling development, and enhanced production of H2O2 in guard cells. By contrast, lines engineered to overexpress ATGPX3 were less sensitive to drought stress than the wild type and displayed less transpirational water loss, which resulted in higher leaf surface temperature. The atgpx3 mutation also disrupted abscisic acid (ABA) activation of calcium channels and the expression of ABA- and stress-responsive genes. ATGPX3 physically interacted with the 2C-type protein phosphatase ABA INSENSITIVE2 (ABI2) and, to a lesser extent, with ABI1. In addition, the redox states of both ATGPX3 and ABI2 were found to be regulated by H2O2. The phosphatase activity of ABI2, measured in vitro, was reduced approximately fivefold by the addition of oxidized ATGPX3. The reduced form of ABI2 was converted to the oxidized form by the addition of oxidized ATGPX3 in vitro, which might mediate ABA and oxidative signaling. These results suggest that ATGPX3 might play dual and distinctive roles in H2O2 homeostasis, acting as a general scavenger and specifically relaying the H2O2 signal as an oxidative signal transducer in ABA and drought stress signaling.

Journal ArticleDOI
TL;DR: The cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated and it was concluded that free radicals generated by exposure to 3.5 to 23.3 μg/ml CeO2 nanoparticles produce significant oxidative stress in the cells.
Abstract: With the fast development of nanotechnology, the nanomaterials start to cause people's attention for potential toxic effect. In this paper, the cytotoxicity and oxidative stress caused by 20-nm cerium oxide (CeO2) nanoparticles in cultured human lung cancer cells was investigated. The sulforhodamine B method was employed to assess cell viability after exposure to 3.5, 10.5, and 23.3 microg/ml of CeO2 nanoparticles for 24, 48, and 72 h. Cell viability decreased significantly as a function of nanoparticle dose and exposure time. Indicators of oxidative stress and cytotoxicity, including total reactive oxygen species, glutathione, malondialdehyde, alpha-tocopherol, and lactate dehydrogenase, were quantitatively assessed. It is concluded from the results that free radicals generated by exposure to 3.5 to 23.3 microg/ml CeO2 nanoparticles produce significant oxidative stress in the cells, as reflected by reduced glutathione and alpha-tocopherol levels; the toxic effects of CeO2 nanoparticles are dose dependent and time dependent; elevated oxidative stress increases the production of malondialdehyde and lactate dehydrogenase, which are indicators of lipid peroxidation and cell membrane damage, respectively.

Journal ArticleDOI
TL;DR: Besides synthesis of phytochelatins, availability of GSH and concerted activity of GR seem to play a central role for Bacopa plants to combat oxidative stress caused by metal and to detoxify it.


Journal ArticleDOI
TL;DR: It is suggested that genetically EAAC1-null (Slc1a1−/−) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes, and thatEAAC1 deficiency thereby leads to impaired neuronal glutATHione metabolism, oxidative stress and age-dependent neurodegeneration.
Abstract: Uptake of the neurotransmitter glutamate is effected primarily by transporters expressed on astrocytes, and downregulation of these transporters leads to seizures and neuronal death. Neurons also express a glutamate transporter, termed excitatory amino acid carrier-1 (EAAC1), but the physiological function of this transporter remains uncertain. Here we report that genetically EAAC1-null (Slc1a1(-/-)) mice have reduced neuronal glutathione levels and, with aging, develop brain atrophy and behavioral changes. EAAC1 can also rapidly transport cysteine, an obligate precursor for neuronal glutathione synthesis. Neurons in the hippocampal slices of EAAC1(-/-) mice were found to have reduced glutathione content, increased oxidant levels and increased susceptibility to oxidant injury. These changes were reversed by treating the EAAC1(-/-) mice with N-acetylcysteine, a membrane-permeable cysteine precursor. These findings suggest that EAAC1 is the primary route for neuronal cysteine uptake and that EAAC1 deficiency thereby leads to impaired neuronal glutathione metabolism, oxidative stress and age-dependent neurodegeneration.

Journal ArticleDOI
TL;DR: It is suggested that differential sensitivity of C3 and C4 plants to water stress appear to be partially governed by their ability to counter oxidative stress, pertinently involving ascorbic acid and glutathione.

Journal ArticleDOI
TL;DR: Results suggest that plants responded positively to moderate Pb concentrations and accumulated high amount of metal, due to metal accumulation coupled with detoxification potential, the plant appears to have potential for its use as phytoremediator species in aquatic environments having moderate pollution of Pb.

Journal ArticleDOI
TL;DR: The mammalian liver tightly regulates its free Cysteine pool, and intracellular cysteine in rat liver is maintained between 20 and 100 nmol/g even when sulfur amino acid intakes are deficient or excessive by regulating the synthesis of glutathione.
Abstract: The mammalian liver tightly regulates its free cysteine pool, and intracellular cysteine in rat liver is maintained between 20 and 100 nmol/g even when sulfur amino acid intakes are deficient or excessive. By keeping cysteine levels within a narrow range and by regulating the synthesis of glutathione, which serves as a reservoir of cysteine, the liver addresses both the need to have adequate cysteine to support normal metabolism and the need to keep cysteine levels below the threshold of toxicity. Cysteine catabolism is tightly regulated via regulation of cysteine dioxygenase (CDO) levels in the liver, with the turnover of CDO protein being dramatically decreased when intracellular cysteine levels increase. This occurs in response to changes in the intracellular cysteine concentration via changes in the rate of CDO ubiquitination and degradation. Glutathione synthesis also increases when intracellular cysteine levels increase as a result of increased saturation of glutamate-cysteine ligase (GCL) with cysteine, and this contributes to removal of excess cysteine. When cysteine levels drop, GCL activity increases, and the increased capacity for glutathione synthesis facilitates conservation of cysteine in the form of glutathione (although the absolute rate of glutathione synthesis still decreases because of the lack of substrate). This increase in GCL activity is dependent on up-regulation of expression of both the catalytic and modifier subunits of GCL, resulting in an increase in total catalytic subunit plus an increase in the catalytic efficiency of the enzyme. An important role of cysteine utilization for coenzyme A synthesis in maintaining cellular cysteine levels in some tissues, and a possible connection between the necessity of controlling cellular cysteine levels to regulate the rate of hydrogen sulfide production, have been suggested by recent literature and are areas that deserve further study.

Journal ArticleDOI
TL;DR: The arguments for and against a role for glutathione in facilitating disulphide‐bond formation are discussed and its role in protecting the cell from endoplasmic‐reticulum‐generated oxidative stress is considered.
Abstract: Glutathione is a ubiquitous molecule found in all parts of the cell where it fulfils a range of functions from detoxification to protection from oxidative damage. It provides the main redox buffer for cells and as such has been implicated in the formation of native disulphide bonds. However, the discovery of the enzyme Ero1 has called into question the exact role of glutathione in this process. In this review, we discuss the arguments for and against a role for glutathione in facilitating disulphide-bond formation and consider its role in protecting the cell from endoplasmic-reticulum-generated oxidative stress.

Journal ArticleDOI
TL;DR: This review summarizes the biosynthesis and function of glutathione in bacteria from physiological and biotechnological standpoints.
Abstract: Glutathione is one of the most abundant thiols present in cyanobacteria and proteobacteria, and in all mitochondria or chloroplast-bearing eukaryotes. In bacteria, in addition to its key role in maintaining the proper oxidation state of protein thiols, glutathione also serves a key function in protecting the cell from the action of low pH, chlorine compounds, and oxidative and osmotic stresses. Moreover, glutathione has emerged as a posttranslational regulator of protein function under conditions of oxidative stress, by the direct modification of proteins via glutathionylation. This review summarizes the biosynthesis and function of glutathione in bacteria from physiological and biotechnological standpoints.

Journal ArticleDOI
TL;DR: Data is presented indicating that cadmium induces cellular death in cortical neurons in culture and this death could be mediated by an apoptotic and a necrotic mechanism.

Journal ArticleDOI
TL;DR: The current data suggest that MPc has oxidative-stress-inducing potential in fish, and that gills and white muscle are the most sensitive organs of B. cephalus, with poor antioxidant potentials.
Abstract: Methyl parathion (MP) is an organophosphorus insecticide used worldwide in agriculture and aquaculture due to its high activity against a broad spectrum of insect pests. The effect of a single exposure to 2 mg L − 1 of a commercial formulation of MP (MPc: Folisuper 600®, MP 600 g L − 1 ) on catalase (CAT), glutathione peroxidase (GPx), superoxide dismutase (SOD), glutathione S -transferase (GST), reduced glutathione (GSH) and lipid peroxidation (LPO) of the liver, white muscle and gills of Brycon cephalus was evaluated after 96 h of treatment. MPc exposure resulted in a significant induction of SOD, CAT and GST activity in all tissues. However, the GPx activity decreased significantly in white muscle and gills, whereas no alterations were observed in hepatic GPx activity. MPc also induced a significant increase in LPO values in the white muscle and gills, while hepatic LPO levels did not show any significant alteration. The current data suggest that MPc has oxidative-stress-inducing potential in fish, and that gills and white muscle are the most sensitive organs of B. cephalus , with poor antioxidant potentials. The various parameters studied in this investigation can also be used as biomarkers of exposure to MPc.

Journal ArticleDOI
TL;DR: The abundance of some Gpxs is modified in plants subjected to environmental constraints, generally increasing during fungal infection, water deficit, and metal stress, and decreasing during photooxidative stress, showing that Gpx proteins are involved in the response to both biotic and abiotic stress conditions.
Abstract: We provide here an exhaustive overview of the glutathione (GSH) peroxidase (Gpx) family of poplar (Populus trichocarpa). Although these proteins were initially defined as GSH dependent, in fact they use only reduced thioredoxin (Trx) for their regeneration and do not react with GSH or glutaredoxin, constituting a fifth class of peroxiredoxins. The two chloroplastic Gpxs display a marked selectivity toward their electron donors, being exclusively specific for Trxs of the y type for their reduction. In contrast, poplar Gpxs are much less specific with regard to their electron-accepting substrates, reducing hydrogen peroxide and more complex hydroperoxides equally well. Site-directed mutagenesis indicates that the catalytic mechanism and the Trx-mediated recycling process involve only two (cysteine [Cys]-107 and Cys-155) of the three conserved Cys, which form a disulfide bridge with an oxidation-redox midpoint potential of -295 mV. The reduction/formation of this disulfide is detected both by a shift on sodium dodecyl sulfate-polyacrylamide gel electrophoresis or by measuring the intrinsic tryptophan fluorescence of the protein. The six genes identified coding for Gpxs are expressed in various poplar organs, and two of them are localized in the chloroplast, with one colocalizing in mitochondria, suggesting a broad distribution of Gpxs in plant cells. The abundance of some Gpxs is modified in plants subjected to environmental constraints, generally increasing during fungal infection, water deficit, and metal stress, and decreasing during photooxidative stress, showing that Gpx proteins are involved in the response to both biotic and abiotic stress conditions.

Journal ArticleDOI
TL;DR: The conclusion that PAD2 encodes GSH1 is supported by several lines of evidence, and showed enhanced susceptibility to additional pathogens, suggesting an important general role of GSH in disease resistance of Arabidopsis.
Abstract: *† ‡ Summary The Arabidopsis pad2-1 mutant belongs to a series of non-allelic camalexin-deficient mutants. It was originally described as showing enhanced susceptibility to virulent strains of Pseudomonas syringae and was later shown to be hyper-susceptible to the oomycete pathogen Phytophthora brassicae (formerly P. porri). Surprisingly, in both pathosystems, the disease susceptibility of pad2-1 was not caused by the camalexin deficiency, suggesting additional roles of PAD2 in disease resistance. The susceptibility of pad2-1 to P. brassicae was used to map the mutation to the gene At4g23100, which encodes c-glutamylcysteine synthetase (c-ECS, GSH1). GSH1 catalyzes the first committed step of glutathione (GSH) biosynthesis. The pad2-1 mutation caused an S to N transition at amino acid position 298 close to the active center. The conclusion that PAD2 encodes GSH1 is supported by several lines of evidence: (i) pad2-1 mutants contained only about 22% of wild-type amounts of GSH, (ii) genetic complementation of pad2-1 with wild-type GSH1 cDNA restored GSH production, accumulation of camalexin in response to P. syringae and resistance to P. brassicae and P. syringae, (iii) another GSH1 mutant, cad2-1, showed pad2-like phenotypes, and (iv) feeding of GSH to excised leaves of pad2-1 restored camalexin production and resistance to P. brassicae. Inoculation of Col-0 with P. brassicae caused a coordinated increase in the transcript abundance of GSH1 and GSH2, the gene encoding the second enzyme in GSH biosynthesis, and resulted in enhanced foliar GSH accumulation. The pad2-1 mutant showed enhanced susceptibility to additional pathogens, suggesting an important general role of GSH in disease resistance of Arabidopsis.

Journal ArticleDOI
TL;DR: The findings strongly suggest that mechanisms other than attenuated oxidative stress explain the impressive longevity of the naked mole‐rat and that NMRs live an order of magnitude longer than predicted based on their body size.
Abstract: Oxidative stress is reputed to be a significant contributor to the aging process and a key factor affecting species longevity. The tremendous natural variation in maximum species lifespan may be due to interspecific differences in reactive oxygen species generation, antioxidant defenses and/or levels of accrued oxidative damage to cellular macromolecules (such as DNA, lipids and proteins). The present study tests if the exceptional longevity of the longest living (> 28.3 years) rodent species known, the naked mole-rat (NMR, Heterocephalus glaber), is associated with attenuated levels of oxidative stress. We compare antioxidant defenses (reduced glutathione, GSH), redox status (GSH/GSSG), as well as lipid (malondialdehyde and isoprostanes), DNA (8-OHdG), and protein (carbonyls) oxidation levels in urine and various tissues from both mole-rats and similar-sized mice. Significantly lower GSH and GSH/GSSG in mole-rats indicate poorer antioxidant capacity and a surprisingly more pro-oxidative cellular environment, manifested by 10-fold higher levels of in vivo lipid peroxidation. Furthermore, mole-rats exhibit greater levels of accrued oxidative damage to lipids (twofold), DNA (approximately two to eight times) and proteins (1.5 to 2-fold) than physiologically age-matched mice, and equal to that of same-aged mice. Given that NMRs live an order of magnitude longer than predicted based on their body size, our findings strongly suggest that mechanisms other than attenuated oxidative stress explain the impressive longevity of this species.

Journal ArticleDOI
TL;DR: Site-directed mutagenesis studies and biophysical analyses have provided important insights into the structural determinants of MRP1 that influence GSH and GSH conjugate binding and transport.

Journal ArticleDOI
TL;DR: PJ consumption by diabetic patients did not worsen the diabetic parameters, but rather resulted in anti-oxidative effects on serum and macrophages, which could contribute to attenuation of atherosclerosis development in these patients.

Journal ArticleDOI
TL;DR: Levels of GSH, GSSG, GPx, GSH and GR were assessed in the caudate region of postmortem brains from schizophrenic patients and control subjects and positive correlations suggest a dynamic state is kept in check during the redox coupling under normal conditions.
Abstract: Altered antioxidant status has been reported in schizophrenia. The glutathione (GSH) redox system is important for reducing oxidative stress. GSH, a radical scavenger, is converted to oxidized glutathione (GSSG) through glutathione peroxidase (GPx), and converted back to GSH by glutathione reductase (GR). Measurements of GSH, GSSG and its related enzymatic reactions are thus important for evaluating the redox and antioxidant status. In the present study, levels of GSH, GSSG, GPx and GR were assessed in the caudate region of postmortem brains from schizophrenic patients and control subjects (with and without other psychiatric disorders). Significantly lower levels of GSH, GPx, and GR were found in schizophrenic group than in control groups without any psychiatric disorders. Concomitantly, a decreased GSH:GSSG ratio was also found in schizophrenic group. Moreover, both GSSG and GR levels were significantly and inversely correlated to age of schizophrenic patients, but not control subjects. No significant differences were found in any GSH redox measures between control subjects and individuals with other types of psychiatric disorders. There were, however, positive correlations between GSH and GPx, GSH and GR, as well as GPx and GR levels in control subjects without psychiatric disorders. These positive correlations suggest a dynamic state is kept in check during the redox coupling under normal conditions. By contrast, lack of such correlations in schizophrenia point to a disturbance of redox coupling mechanisms in the antioxidant defense system, possibly resulting from a decreased level of GSH as well as age-related decreases of GSSG and GR activities.

Journal ArticleDOI
TL;DR: It is shown that xCT can provide neuroprotection by enhancing glutathione export from non-neuronal cells such as astrocytes and meningeal cells and is critical for cell proliferation during development in vitro and possibly in vivo.
Abstract: The cystine/glutamate exchanger (xCT) provides intracellular cyst(e)ine for production of glutathione, a major cellular antioxidant. Using xCT overexpression and underexpression, we present evidence that xCT-dependent glutathione production modulates both neuroprotection from oxidative stress and cell proliferation. In embryonic and adult rat brain, xCT protein was enriched at the CSF-brain barrier (i.e., meninges) and also expressed in the cortex, hippocampus, striatum, and cerebellum. To examine the neuroprotective role of xCT, various non-neuronal cell types (astrocytes, meningeal cells, and peripheral fibroblasts) were cocultured with immature cortical neurons and exposed to oxidative glutamate toxicity, a model involving glutathione depletion. Cultured meningeal cells, which naturally maintain high xCT expression, were more neuroprotective than astrocytes. Selective xCT overexpression in astrocytes was sufficient to enhance glutathione synthesis/release and confer potent glutathione-dependent neuroprotection from oxidative stress. Moreover, normally nonprotective fibroblasts could be re-engineered to be neuroprotective with ectopic xCT overexpression indicating that xCT is a key step in the pathway to glutathione synthesis. Conversely, astrocytes and meningeal cells derived from sut/sut mice (xCT loss-of-function mutants) showed greatly reduced proliferation in culture attributable to increased oxidative stress and thiol deficiency, because growth could be rescued by the thiol-donor beta-mercaptoethanol. Strikingly, sut/sut mice developed brain atrophy by early adulthood, exhibiting ventricular enlargement, thinning of the cortex, and shrinkage of the striatum. Our results indicate that xCT can provide neuroprotection by enhancing glutathione export from non-neuronal cells such as astrocytes and meningeal cells. Furthermore, xCT is critical for cell proliferation during development in vitro and possibly in vivo.

Journal ArticleDOI
TL;DR: H2S is shown to protect an immortalized mouse hippocampal cell line from oxidative glutamate toxicity by activating ATP-dependent K+ (KATP and Cl- channels, in addition to increasing the levels of glutathione.
Abstract: Hydrogen sulfide (H2S) is a neuromodulator in the brain and a relaxant for smooth muscle. H2S protects primary cortical neurons from oxidative stress by increasing the intracellular concentrations of glutathione, the major antioxidant in cells. However, changes in glutathione alone are not sufficient to account for full protection in all types of nerve cells. H2S is here shown to protect an immortalized mouse hippocampal cell line from oxidative glutamate toxicity by activating ATP-dependent K+ (KATP) and Cl− channels, in addition to increasing the levels of glutathione. The present study therefore identifies a novel pathway for H2S protection from oxidative stress.