scispace - formally typeset
Search or ask a question

Showing papers on "Histone H4 published in 2017"


Journal ArticleDOI
11 Oct 2017-Nature
TL;DR: Cryo-electron microscopy structure of Chd1 from the yeast Saccharomyces cerevisiae bound to a nucleosome at a resolution of 4.8 Å is reported, revealing that the double chromodomain swings towards nucleosomal DNA at SHL +1, resulting in ATPase closure.
Abstract: A cryo-electron microscopy structure of the chromatin remodelling factor Chd1 bound to a nucleosome leads to a model for DNA translocation by its ATPase motor. The chromatin remodelling factor Chd1 can alter nucleosome positioning and facilitates the passage of RNA polymerase II through nucleosomes. Here, Patrick Cramer and colleagues describe the cryo-electron microscopy structure of full-length yeast Chd1 bound to a nucleosome. The structure reveals that Chd1 detaches two turns of DNA from the histone octamer, with the ATPase motor engaged with DNA at site SHL +2 and Chd1 trapped in a poised state. The authors propose a model for how the ATPase promotes directional translocation and how it is activated by binding of the regulatory double chromodomain to nucleosomal DNA. The structure should aid mechanistic understanding of remodellers in the CHD family across all species and of other remodelling factors that resemble Chd1 in architecture. Chromatin-remodelling factors change nucleosome positioning and facilitate DNA transcription, replication, and repair1. The conserved remodelling factor chromodomain-helicase-DNA binding protein 1(Chd1)2 can shift nucleosomes and induce regular nucleosome spacing3,4,5. Chd1 is required for the passage of RNA polymerase IIthrough nucleosomes6 and for cellular pluripotency7. Chd1 contains the DNA-binding domains SANT and SLIDE, a bilobal motor domain that hydrolyses ATP, and a regulatory double chromodomain. Here we report the cryo-electron microscopy structure of Chd1 from the yeast Saccharomyces cerevisiae bound to a nucleosome at a resolution of 4.8 A. Chd1 detaches two turns of DNA from the histone octamer and binds between the two DNA gyres in a state poised for catalysis. The SANT and SLIDE domains contact detached DNA around superhelical location (SHL) −7 of the first DNA gyre. The ATPase motor binds the second DNA gyre at SHL +2 and is anchored to the N-terminal tail of histone H4, as seen in a recent nucleosome–Snf2 ATPase structure8. Comparisons with published results9 reveal that the double chromodomain swings towards nucleosomal DNA at SHL +1, resulting in ATPase closure. The ATPase can then promote translocation of DNA towards the nucleosome dyad, thereby loosening the first DNA gyre and remodelling the nucleosome. Translocation may involve ratcheting of the two lobes of the ATPase, which is trapped in a pre- or post-translocation state in the absence8 or presence, respectively, of transition state-mimicking compounds.

185 citations


Journal ArticleDOI
TL;DR: It is proposed that an ordered histone code can promote progression through the transcription cycle, providing new mechanistic insight indicating that SEC recruitment to certain acetylated histones on a subset of genes stimulates the subsequent release of paused pol II needed for transcription elongation.

152 citations


Journal ArticleDOI
TL;DR: This study suggests that H4K16Ac directly reduces the inter-nucleosome interaction mediated by the H4 tail, which might further encourage the binding of nonhistone proteins on the acidic patch.

112 citations


Journal ArticleDOI
09 Mar 2017-Nature
TL;DR: These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.
Abstract: P53-binding protein 1 (53BP1) is a multi-functional double-strand break repair protein that is essential for class switch recombination in B lymphocytes and for sensitizing BRCA1-deficient tumours to poly-ADP-ribose polymerase-1 (PARP) inhibitors. Central to all 53BP1 activities is its recruitment to double-strand breaks via the interaction of the tandem Tudor domain with dimethylated lysine 20 of histone H4 (H4K20me2). Here we identify an uncharacterized protein, Tudor interacting repair regulator (TIRR), that directly binds the tandem Tudor domain and masks its H4K20me2 binding motif. Upon DNA damage, the protein kinase ataxia-telangiectasia mutated (ATM) phosphorylates 53BP1 and recruits RAP1-interacting factor 1 (RIF1) to dissociate the 53BP1-TIRR complex. However, overexpression of TIRR impedes 53BP1 function by blocking its localization to double-strand breaks. Depletion of TIRR destabilizes 53BP1 in the nuclear-soluble fraction and alters the double-strand break-induced protein complex centring 53BP1. These findings identify TIRR as a new factor that influences double-strand break repair using a unique mechanism of masking the histone methyl-lysine binding function of 53BP1.

97 citations


Journal ArticleDOI
20 Jan 2017-Science
TL;DR: Methyl transverse relaxation–optimized nuclear magnetic resonance (methyl-TROSY NMR) experiments on the ~450-kilodalton complex of a nucleosome with an activated form of the major ISWI family remodeling motor from humans, SNF2h, indicate that the histone octamer is deformed in the presence of SNF 2h.
Abstract: INTRODUCTION The establishment of specific gene expression states during the course of development, as well as their maintenance through the disruptive events of transcription, DNA replication, and DNA repair, requires rapid rearrangements of chromatin structure. Adenosine 5′-triphosphate (ATP)–dependent chromatin remodeling motors are the workhorses that enable dynamic changes in chromatin structure. These motors have the formidable task of mobilizing DNA in the context of a nucleosome, which contains ~150 base pairs of DNA tightly wrapped around an octamer of histone proteins. Yet, compared to other essential motors such as myosins and helicases, little is known about the biochemical mechanisms of chromatin remodeling motors, limiting an understanding of how their functions are regulated. RATIONALE Two classes of chromatin remodeling motors, the ISWI class and the SWI-SNF class, have proved to be powerful model systems for asking mechanistic questions. Notably, both the ISWI and SWI-SNF family motors can move DNA without disassembling the histone octamer. Further, recent studies indicate that ISWI family motors translocate DNA out of the nucleosome before feeding DNA into the nucleosome, a result that is difficult to reconcile with rigid Lego-block–like models of the histone octamer. One way the seemingly complex task of chromatin remodeling may be facilitated is by distorting the histone octamer. Here, we probe this possibility by carrying out methyl transverse relaxation–optimized nuclear magnetic resonance (methyl-TROSY NMR) experiments on the ~450-kilodalton complex of a nucleosome with an activated form of the major ISWI family remodeling motor from humans, SNF2h. Methyl-TROSY is a powerful tool capable of providing site-specific information on the dynamics of individual amino acid residues. We have further tested the functional relevance of information obtained from these NMR experiments in the context of chromatin remodeling reactions by introducing site-specific cysteine cross-links at the histone H3-H4 interface. These cross-links have provided a means to restrain backbone movements and thus, have allowed us to test the importance of octamer deformability during ATP-dependent remodeling reactions. RESULTS We show that the dynamics of buried isoleucine, leucine, and valine residues in histone H4 change when the nucleosome is bound to SNF2h in the presence of the nonhydrolyzable ATP analog ADP-BeFx. NMR studies following the isoleucine residues of histone H2A further indicate that the changes induced upon SNF2h binding extend across the nucleosome. These results indicate that the histone octamer is deformed in the presence of SNF2h. Using site-specific disulfide bridges at the H3-H4 interface, we show that interfering with octamer deformation can inhibit nucleosome sliding by SNF2h or alter the directionality of nucleosome sliding. We further show that different classes of remodeling enzymes respond differently to these disulfide restraints. Disulfide bridges that inhibit SNF2h-mediated sliding allow sliding by the INO80 complex and increase octamer eviction by the SWI-SNF family complex, RSC. CONCLUSION The histone core of a nucleosome is more plastic than previously imagined, and octamer deformation can play different roles based on the type of chromatin remodeling complex.

90 citations


Journal ArticleDOI
TL;DR: A feedforward ACK1/pY88-H4/WDR5/MLL2/AR epigenetic circuit drives CRPC and is necessary for maintenance of the malignant state.

83 citations


Journal ArticleDOI
TL;DR: This work found that Arabidopsis thaliana MUT9P-LIKE-KINASE (MLK4) phosphorylates histone H2A on serine 95, a plant-specific modification in the histone core domain, and suggests that phosphorylation of H1.Z and H4 acetylation inArabidopsis is required for the regulation of flowering time and is involved in deposition of the hist one variant H2 A.Z.
Abstract: Phosphorylation of histone H3 affects transcription, chromatin condensation, and chromosome segregation. However, the role of phosphorylation of histone H2A remains unclear. Here, we found that Arabidopsis thaliana MUT9P-LIKE-KINASE (MLK4) phosphorylates histone H2A on serine 95, a plant-specific modification in the histone core domain. Mutations in MLK4 caused late flowering under long-day conditions but no notable phenotype under short days. MLK4 interacts with CIRCADIAN CLOCK ASSOCIATED1 (CCA1), which allows MLK4 to bind to the GIGANTEA (GI) promoter. CCA1 interacts with YAF9a, a co-subunit of the Swi2/Snf2-related ATPase (SWR1) and NuA4 complexes, which are responsible for incorporating the histone variant H2A.Z into chromatin and histone H4 acetylase activity, respectively. Importantly, loss of MLK4 function led to delayed flowering by decreasing phosphorylation of H2A serine 95, along with attenuated accumulation of H2A.Z and the acetylation of H4 at GI, thus reducing GI expression. Together, our results provide insight into how phosphorylation of H2A serine 95 promotes flowering time and suggest that phosphorylation of H2A serine 95 modulated by MLK4 is required for the regulation of flowering time and is involved in deposition of the histone variant H2A.Z and H4 acetylation in Arabidopsis.

74 citations


Journal ArticleDOI
TL;DR: An RNAi-based screen of human lysine methyltransferases identified the SET and MYND domain-containing protein 2 (SMYD2) as an enzyme that regulates HIV-1 latency and proposes that a SMYD2-H4K20me1-L3MBTL1 axis contributes to HIV- 1 latency and can be targeted with small-molecule SMYD 2 inhibitors.

71 citations


Journal ArticleDOI
TL;DR: Four Arabidopsis thaliana Nuclear Factor-YC homologs function as transcriptional co-repressors by interacting with HDA15 to inhibit hypocotyl elongation in photomorphogenesis during the early seedling stage, highlighting that NF-YCs can modulate plant development in response to environmental cues via epigenetic regulation.

70 citations


Journal ArticleDOI
TL;DR: NatD-mediated acetylation of histone H4 serine 1 competes with the phosphorylation by CK2α at the same residue thus leading to the upregulation of Slug and tumor progression, indicating that NatD is a crucial epigenetic modulator of cell invasion during lung cancer progression.
Abstract: N-α-acetyltransferase D (NatD) mediates N-α-terminal acetylation (Nt-acetylation) of histone H4 known to be involved in cell growth. Here we report that NatD promotes the migratory and invasive capabilities of lung cancer cells in vitro and in vivo. Depletion of NatD suppresses the epithelial-to-mesenchymal transition (EMT) of lung cancer cells by directly repressing the expression of transcription factor Slug, a key regulator of EMT. We found that Nt-acetylation of histone H4 antagonizes histone H4 serine 1 phosphorylation (H4S1ph), and that downregulation of Nt-acetylation of histone H4 facilitates CK2α binding to histone H4 in lung cancer cells, resulting in increased H4S1ph and epigenetic reprogramming to suppress Slug transcription to inhibit EMT. Importantly, NatD is commonly upregulated in primary human lung cancer tissues where its expression level correlates with Slug expression, enhanced invasiveness, and poor clinical outcomes. These findings indicate that NatD is a crucial epigenetic modulator of cell invasion during lung cancer progression. NatD is an acetyltransferase responsible for N-α-terminal acetylation of the histone H4 and H2A and has been linked to cell growth. Here the authors show that NatD-mediated acetylation of histone H4 serine 1 competes with the phosphorylation by CK2α at the same residue thus leading to the upregulation of Slug and tumor progression.

70 citations


Journal ArticleDOI
TL;DR: The mechanism of nucleosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core, and it is demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque.
Abstract: Nucleosomes represent the basic building block of chromatin and provide an important mechanism by which cellular processes are controlled. The locations of nucleosomes across the genome are not random but instead depend on both the underlying DNA sequence and the dynamic action of other proteins within the nucleus. These processes are central to cellular function, and the molecular details of the interplay between DNA sequence and nucleosome dynamics remain poorly understood. In this work, we investigate this interplay in detail by relying on a molecular model, which permits development of a comprehensive picture of the underlying free energy surfaces and the corresponding dynamics of nucleosome repositioning. The mechanism of nucleosome repositioning is shown to be strongly linked to DNA sequence and directly related to the binding energy of a given DNA sequence to the histone core. It is also demonstrated that chromatin remodelers can override DNA-sequence preferences by exerting torque, and the histone H4 tail is then identified as a key component by which DNA-sequence, histone modifications, and chromatin remodelers could in fact be coupled.

Journal ArticleDOI
Qi Hu1, Maria Victoria Botuyan1, Gaofeng Cui1, Debiao Zhao1, Georges Mer1 
TL;DR: This work uncovers diverse ubiquitin recognition mechanisms in the nucleosome, explaining how RNF168, RNF169, and RAD18 regulate 53BP1 chromatin recruitment and how specificity can be achieved in the recognition of a Ubiquitin-modified substrate.

Journal ArticleDOI
TL;DR: New pathway through which H3K36me3 stimulates H4K16ac upon DNA double-strand break (DSB) induction in human cells is discovered and the function of this cross-talk in DNA DSB repair is defined.

Journal ArticleDOI
07 Jan 2017-Pain
TL;DR: Results suggested that enhanced interaction between STAT3 and p300 mediated the epigenetic upregulation of CXCL12 in dorsal horn neurons, which contributed to the antitubulin chemotherapeutics–induced persistent pain.
Abstract: Clinically, Microtubule-targeted agents-induced neuropathic pain hampers chemotherapeutics for patients with cancer. Here, we found that application of paclitaxel or vincristine increased the protein and mRNA expression of CXCL12 and frequency and amplitude of miniature excitatory post synaptic currents (mEPSCs) in spinal dorsal horn neurons. Spinal local application of CXCL12 induced the long-term potentiation of nociceptive synaptic transmission and increased the amplitude of mEPSCs. Inhibition of CXCL12 using the transgenic mice (CXCL12) or neutralizing antibody or siRNA ameliorated the mEPSC's enhancement and mechanical allodynia. In addition, paclitaxel and vincristine both could increase the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the acetylation of histone H4 in the CXCL12-expressing neurons. Immunoprecipitation and chromatin immunoprecipitation assays demonstrated that antitubulin chemotherapeutics increased the binding of STAT3 to the CXCL12 gene promoter and the interaction between STAT3 and p300, and contributed to the enhanced transcription of CXCL12 by increasing the acetylation of histone H4 in CXCL12 gene promoter. Inhibition of STAT3 by intrathecal injection of adeno-associated virus encoding Cre and green fluorescent protein into STAT3 mice or inhibitor S3I-201 into rats suppressed the CXCL12 upsurge by decreasing the acetylation of histone H4. Finally, blockade of CXCR4 but not CXCR7 ameliorated the paclitaxel- or vincristine-induced mechanical allodynia. Together, these results suggested that enhanced interaction between STAT3 and p300 mediated the epigenetic upregulation of CXCL12 in dorsal horn neurons, which contributed to the antitubulin chemotherapeutics-induced persistent pain.

Journal ArticleDOI
TL;DR: This study uncovers a mechanism in which the shade-responsive factor PIF7 recruits MRG1/MRG2 that binds H3K4me3/H3K36me3 and brings histone-acetylases to induce histone acetylations to promote expression of shade responsive genes, providing thus a molecular mechanistic link coupling the environmental light to epigenetic modification in regulation of hypocotyl elongation in plant SAS.
Abstract: Shade avoidance syndrome (SAS) allows a plant grown in a densely populated environment to maximize opportunities to access to sunlight. Although it is well established that SAS is accompanied by gene expression changes, the underlying molecular mechanism needs to be elucidated. Here, we identify the H3K4me3/H3K36me3-binding proteins, Morf Related Gene (MRG) group proteins MRG1 and MRG2, as positive regulators of shade-induced hypocotyl elongation in Arabidopsis (Arabidopsis thaliana). MRG2 binds PHYTOCHROME-INTERACTING FACTOR7 (PIF7) and regulates the expression of several common downstream target genes, including YUCCA8 and IAA19 involved in the auxin biosynthesis or response pathway and PRE1 involved in brassinosteroid regulation of cell elongation. In response to shade, PIF7 and MRG2 are enriched at the promoter and gene-body regions and are necessary for increase of histone H4 and H3 acetylation to promote target gene expression. Our study uncovers a mechanism in which the shade-responsive factor PIF7 recruits MRG1/MRG2 that binds H3K4me3/H3K36me3 and brings histone-acetylases to induce histone acetylations to promote expression of shade responsive genes, providing thus a molecular mechanistic link coupling the environmental light to epigenetic modification in regulation of hypocotyl elongation in plant SAS.

Journal ArticleDOI
TL;DR: The authors' data indicate that the positive charge and length of the side chain of H4 K16 are important for its access to the adjacent nucleosome in the process of nucleosomesome-nucleosome stacking and array folding.

Journal ArticleDOI
TL;DR: It is demonstrated that PRMT7-dependent monomethylation at one site in histone H4 can activate another site for methylation by PRMT5, and allosteric regulation has not been previously seen in this class of protein modification enzymes.
Abstract: Arginine methylation on histones is a central player in epigenetics and in gene activation and repression. Protein arginine methyltransferase (PRMT) activity has been implicated in stem cell pluripotency, cancer metastasis, and tumorigenesis. The expression of one of the nine mammalian PRMTs, PRMT5, affects the levels of symmetric dimethylarginine (SDMA) at Arg-3 on histone H4, leading to the repression of genes which are related to disease progression in lymphoma and leukemia. Another PRMT, PRMT7, also affects SDMA levels at the same site despite its unique monomethylating activity and the lack of any evidence for PRMT7-catalyzed histone H4 Arg-3 methylation. We present evidence that PRMT7-mediated monomethylation of histone H4 Arg-17 regulates PRMT5 activity at Arg-3 in the same protein. We analyzed the kinetics of PRMT5 over a wide range of substrate concentrations. Significantly, we discovered that PRMT5 displays positive cooperativity in vitro, suggesting that this enzyme may be allosterically regulated in vivo as well. Most interestingly, monomethylation at Arg-17 in histone H4 not only raised the general activity of PRMT5 with this substrate, but also ameliorated the low activity of PRMT5 at low substrate concentrations. These kinetic studies suggest a biochemical explanation for the interplay between PRMT5- and PRMT7-mediated methylation of the same substrate at different residues and also suggest a general model for regulation of PRMTs. Elucidating the exact relationship between these two enzymes when they methylate two distinct sites of the same substrate may aid in developing therapeutics aimed at reducing PRMT5/7 activity in cancer and other diseases.

Journal ArticleDOI
TL;DR: The findings reveal that TET1 forms a complex with hMOF to modulate its function and the level of H4K16Ac ultimately affect gene expression and DNA repair.
Abstract: The Ten Eleven Translocation 1 (TET1) protein is a DNA demethylase that regulates gene expression through altering statue of DNA methylation. However, recent studies have demonstrated that TET1 could modulate transcriptional expression independent of its DNA demethylation activity; yet, the detailed mechanisms underlying TET1's role in such transcriptional regulation remain not well understood. Here, we uncovered that Tet1 formed a chromatin complex with histone acetyltransferase Mof and scaffold protein Sin3a in mouse embryonic stem cells by integrative genomic analysis using publicly available ChIP-seq data sets and a series of in vitro biochemical studies in human cell lines. Mechanistically, the TET1 facilitated chromatin affinity and enzymatic activity of hMOF against acetylation of histone H4 at lysine 16 via preventing auto-acetylation of hMOF, to regulate expression of the downstream genes, including DNA repair genes. We found that Tet1 knockout MEF cells exhibited an accumulation of DNA damage and genomic instability and Tet1 deficient mice were more sensitive to x-ray exposure. Taken together, our findings reveal that TET1 forms a complex with hMOF to modulate its function and the level of H4K16Ac ultimately affect gene expression and DNA repair.

Journal ArticleDOI
TL;DR: Applying low-flow capillary electrophoresis -electrospray ionization interface coupled to Orbitrap mass spectrometers for fast and sensitive analyses of various post-translational modifications of intact and enzymatically digested histone H4, this work was able to detect a variety of citrullinated proteoforms.

Journal ArticleDOI
TL;DR: In this paper, a small ubiquitin-like modifier (SUMO)-driven regulation of LSD1 activity with semisynthetic nucleosomes containing site-specifically methylated and sumoylated histones was investigated.
Abstract: Lysine-specific demethylase 1 (LSD1) downregulates eukaryotic gene activity by demethylating mono- and dimethylated Lys4 in histone H3. Elucidating the biochemical crosstalk of LSD1 with histone post-translational modifications (PTMs) is essential for developing LSD1-targeted therapeutics in human cancers. We interrogated the small ubiquitin-like modifier (SUMO)-driven regulation of LSD1 activity with semisynthetic nucleosomes containing site-specifically methylated and sumoylated histones. We discovered that nucleosomes containing sumoylated histone H4 (suH4), a modification associated with gene repression, stimulate LSD1 activity by a mechanism dependent upon the SUMO-interaction motif in CoREST. Furthermore, the stimulatory effect of suH4 was spatially limited and did not extend to the demethylation of adjacent nonsumoylated nucleosomes. Thus, we have identified histone modification by SUMO as the first PTM that stimulates intranucleosomal demethylation by the developmentally critical LSD1–CoREST complex.

Journal ArticleDOI
TL;DR: In mice, the exposure to HFD induces epigenetic silencing of the Ankrd26 gene, which contributes to the adipose tissue inflammatory secretion profile induced by high-fat regimens.
Abstract: Epigenetic modifications alter transcriptional activity and contribute to the effects of environment on the individual risk of obesity and Type 2 Diabetes (T2D). Here, we have estimated the in vivo effect of a fat-enriched diet (HFD) on the expression and the epigenetic regulation of the Ankyrin repeat domain 26 (Ankrd26) gene, which is associated with the onset of these disorders. In visceral adipose tissue (VAT), HFD exposure determined a specific hyper-methylation of Ankrd26 promoter at the −436 and −431 bp CpG sites (CpGs) and impaired its expression. Methylation of these 2 CpGs impaired binding of the histone acetyltransferase/transcriptional coactivator p300 to this same region, causing hypo-acetylation of histone H4 at the Ankrd26 promoter and loss of binding of RNA Pol II at the Ankrd26 Transcription Start Site (TSS). In addition, HFD increased binding of DNA methyl-transferases (DNMTs) 3a and 3b and methyl-CpG-binding domain protein 2 (MBD2) to the Ankrd26 promoter. More importantly, Ankrd26 down-regulation enhanced secretion of pro-inflammatory mediators by 3T3-L1 adipocytes as well as in human sera. Thus, in mice, the exposure to HFD induces epigenetic silencing of the Ankrd26 gene, which contributes to the adipose tissue inflammatory secretion profile induced by high-fat regimens.

Journal ArticleDOI
TL;DR: Re recombinant neprosin is expressed and characterized, a novel prolyl endoprotease of the DUF239 family, which preferentially cleaves C-terminal to proline residues under highly acidic conditions and is shown to be a useful reagent for reading epigenetic marks on histones.

Journal ArticleDOI
TL;DR: Using cell lines from Hat1+/+ and Hat1−/− mouse embryos, it is demonstrated that Hat1 is not required for either histone nuclear import or deposition, and results indicate thatHat1 is transiently recruited to sites of Chromatin assembly, dissociating prior to the maturation of chromatin structure.
Abstract: Histone acetyltransferase 1 (Hat1) catalyzes the acetylation of newly synthesized histone H4 at lysines 5 and 12 that accompanies replication-coupled chromatin assembly. The acetylation of newly synthesized H4 occurs in the cytoplasm and the function of this acetylation is typically ascribed to roles in either histone nuclear import or deposition. Using cell lines from Hat1+/+ and Hat1-/- mouse embryos, we demonstrate that Hat1 is not required for either histone nuclear import or deposition. We employed quantitative proteomics to characterize Hat1-dependent changes in the composition of nascent chromatin structure. Among the proteins depleted from nascent chromatin isolated from Hat1-/- cells are several bromodomain-containing proteins, including Brg1, Baz1A and Brd3. Analysis of the binding specificity of their bromodomains suggests that Hat1-dependent acetylation of H4 is directly involved in their recruitment. Hat1-/- nascent chromatin is enriched for topoisomerase 2α and 2β. The enrichment of topoisomerase 2 is functionally relevant as Hat1-/- cells are hyper-sensitive to topoisomerase 2 inhibition suggesting that Hat1 is required for proper chromatin topology. In addition, our results indicate that Hat1 is transiently recruited to sites of chromatin assembly, dissociating prior to the maturation of chromatin structure.

Journal ArticleDOI
05 Jan 2017-Blood
TL;DR: The discovery that MOF and its H4K16ac activity are required for adult but not early and midgestational hematopoiesis supports the notion that multiple chromatin regulators may be crucial for hematopoliesis at varying stages of development.

Journal ArticleDOI
TL;DR: It is reported that SET8, a histone H4 lysine 20 monomethylase (H4K20me1), is highly induced during Mycobacterium tuberculosis infection that orchestrates immune evasion strategies through the induction of NQO1 and TRXR1 in vivo.
Abstract: NQO1 and TRXR1 are important host reductases implicated in the regulation of inflammation and apoptosis. Although the transcriptional machinery governing these processes have been extensively investigated, the associated epigenetic regulatory events remain unclear. Here, we report that SET8, a histone H4 lysine 20 monomethylase (H4K20me1), is highly induced during Mycobacterium tuberculosis infection that orchestrates immune evasion strategies through the induction of NQO1 and TRXR1 in vivo. SET8, along with FoxO3a, mediates an active NQO1-PGC1-α complex, which promotes the anti-inflammatory M2 macrophage phenotype, and assists TRXR1-regulated arrest of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. Strikingly, the loss-of-function analysis in an in vivo mouse tuberculosis model further corroborated the pivotal role of SET8-responsive NQO1 and TRXR1 in mycobacterial survival. Thus, augmenting host immune responses against Mycobacterium tuberculosis by harnessing the SET8-NQO1/TRXR1 axis with its specific and potent inhibitors could lead to promising host-directed therapeutic adjuvants for tuberculosis treatment.

Journal ArticleDOI
TL;DR: The data indicate that the obesity impacts on H 4ac levels and that strenuous exercise leads to an enhanced chronic low-grade inflammation profile in obesity via an imbalance on H4ac/HDAC2.
Abstract: This study evaluated the response of global histone H4 acetylation (H4ac), histone deacetylase 2 (HDAC2) activity, as well as the production of proinflammatory cytokines and monocyte phenotypes of lean and obese males after exercise. Ten lean and ten obese sedentary men were submitted to one session of strenuous exercise, and peripheral blood mononuclear cells (PBMC) were stimulated in vitro with lipopolysaccharide (LPS). Global H4ac levels, HDAC2 activity in PBMC, and IL-6, IL-8, and TNF-α production were analyzed. Monocyte phenotype was determined in accordance with the expression of CD14 and CD16. At rest, obese individuals presented higher frequency of proinflammatory CD14+CD16+ monocytes. LPS induced a significant augment in global H4ac and in the production of IL-6, IL-8, and TNF-α mainly in obese individuals. After exercise, the increased production of IL-8 and TNF-α and peripheral frequency of CD14+CD16+ were observed in both groups. In addition, exercise also induced a significant hyperacetylation of histone H4 and decreased HDAC2 activity in both nonstimulated and LPS-stimulated PBMC of obese individuals. Our data indicate that the obesity impacts on H4ac levels and that strenuous exercise leads to an enhanced chronic low-grade inflammation profile in obesity via an imbalance on H4ac/HDAC2.

Journal ArticleDOI
TL;DR: This work developed a highly sensitive (Z' score = 0.7) robotic high throughput screening (HTS) platform to discover small molecule inhibitors of PRMT5 by adapting the AlphaLISA™ technology, and identified specificPRMT5 inhibitors P1608K04 and P1618J22, and further validated their efficacy and specificity for inhibiting PR MT5.
Abstract: The protein arginine methyltransferase (PRMT) family of enzymes comprises nine family members in mammals. They catalyze arginine methylation, either monomethylation or symmetric/asymmetric dimethylation of histone and non-histone proteins. PRMT methylation of its substrate proteins modulates cellular processes such as signal transduction, transcription, and mRNA splicing. Recent studies have linked overexpression of PRMT5, a member of the PRMT superfamily, to oncogenesis, making it a potential target for cancer therapy. In this study, we developed a highly sensitive (Z′ score = 0.7) robotic high throughput screening (HTS) platform to discover small molecule inhibitors of PRMT5 by adapting the AlphaLISA™ technology. Using biotinylated histone H4 as a substrate, and S-adenosyl-L-methionine as a methyl donor, PRMT5 symmetrically dimethylated H4 at arginine (R) 3. Highly specific acceptor beads for symmetrically dimethylated H4R3 and streptavidin-coated donor beads bound the substrate, emitting a signal that is proportional to the methyltransferase activity. Using this powerful approach, we identified specific PRMT5 inhibitors P1608K04 and P1618J22, and further validated their efficacy and specificity for inhibiting PRMT5. Importantly, these two compounds exhibited much more potent efficacy than the commercial PRMT5 inhibitor EPZ015666 in both pancreatic and colorectal cancer cells. Overall, our work highlights a novel, powerful, and sensitive approach to identify specific PRMT5 inhibitors. The general principle of this HTS screening method can not only be applied to PRMT5 and the PRMT superfamily, but may also be extended to other epigenetic targets. This approach allows us to identify compounds that inhibit the activity of their respective targets, and screening hits like P1608K04 and P1618J22 may serve as the basis for novel drug development to treat cancer and/or other diseases.

Journal ArticleDOI
TL;DR: It is suggested that HDAC1-specific inhibition prevents progenitor cells of the retina from exiting the cell cycle and differentiating, and may be an essential epigenetic regulator of the transition from progenitors cells to terminally differentiated photoreceptors.

Journal ArticleDOI
TL;DR: It is demonstrated that KAT8 is essential for female fertility by regulating antioxidant gene expression and identified as the first histone acetyltransferase with an essential function in oogenesis.
Abstract: Proper oocyte development is crucial for female fertility and requires timely and accurate control of gene expression. K (lysine) acetyltransferase 8 (KAT8), an important component of the X chromosome dosage compensation system in Drosophila, regulates gene activity by acetylating histone H4 preferentially at lysine 16. To explore the function of KAT8 during mouse oocyte development, we crossed Kat8flox/flox mice with Gdf9-Cre mice to specifically delete Kat8 in oocytes. Oocyte Kat8 deletion resulted in female infertility, with follicle development failure in the secondary and preantral follicle stages. RNA-seq analysis revealed that Kat8 deficiency in oocytes results in significant downregulation of antioxidant genes, with a consequent increase in reactive oxygen species. Intraperitoneal injection of the antioxidant N-acetylcysteine rescued defective follicle and oocyte development resulting from Kat8 deficiency. Chromatin immunoprecipitation assays indicated that KAT8 regulates antioxidant gene expression by direct binding to promoter regions. Taken together, our findings demonstrate that KAT8 is essential for female fertility by regulating antioxidant gene expression and identify KAT8 as the first histone acetyltransferase with an essential function in oogenesis.

Journal ArticleDOI
TL;DR: A reduction of global and gene-specific histone H4K16 acetylation is identified as a key pathophysiologic mechanism contributing to the development of NASH-derived HCC and the importance of epigenetic alterations as diagnostic and therapeutic targets for HCC is emphasized.
Abstract: Hepatocellular carcinoma (HCC) is one of the most aggressive human cancers, and its incidence is steadily increasing worldwide. Recent epidemiologic findings have suggested that the increased incidence of HCC is associated with obesity, type II diabetes mellitus, and nonalcoholic steatohepatitis (NASH); however, the mechanisms and the molecular pathogenesis of NASH-related HCC are not fully understood. To elucidate the underlying mechanisms of the development of NASH-related HCC, we investigated the hepatic transcriptomic and histone modification profiles in Stelic Animal Model mice, the first animal model of NASH-related HCC to resemble the disease pathogenesis in humans. The results demonstrate that the development of NASH-related HCC is characterized by progressive transcriptomic alterations, global loss of histone H4 lysine 20 trimethylation (H4K20me3), and global and gene-specific deacetylation of histone H4 lysine 16 (H4K16). Pathway analysis of the entire set of differentially expressed genes indicated that the inhibition of cell death pathway was the most prominent alteration, and this was facilitated by persistent gene-specific histone H4K16 deacetylation. Mechanistically, deacetylation of histone H4K16 was associated with downregulation of lysine acetyltransferase KAT8, which was driven by overexpression of its inhibitor nuclear protein 1 (Nupr1). The results of this study identified a reduction of global and gene-specific histone H4K16 acetylation as a key pathophysiologic mechanism contributing to the development of NASH-derived HCC and emphasized the importance of epigenetic alterations as diagnostic and therapeutic targets for HCC.Implications: Histone H4K16 deacetylation induces silencing of genes related to the cell death that occurred during the development of NASH-related HCC. Mol Cancer Res; 15(9); 1163-72. ©2017 AACR.