scispace - formally typeset
Search or ask a question

Showing papers on "Image segmentation published in 2009"


Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper introduces a method for salient region detection that outputs full resolution saliency maps with well-defined boundaries of salient objects that outperforms the five algorithms both on the ground-truth evaluation and on the segmentation task by achieving both higher precision and better recall.
Abstract: Detection of visually salient image regions is useful for applications like object segmentation, adaptive compression, and object recognition. In this paper, we introduce a method for salient region detection that outputs full resolution saliency maps with well-defined boundaries of salient objects. These boundaries are preserved by retaining substantially more frequency content from the original image than other existing techniques. Our method exploits features of color and luminance, is simple to implement, and is computationally efficient. We compare our algorithm to five state-of-the-art salient region detection methods with a frequency domain analysis, ground truth, and a salient object segmentation application. Our method outperforms the five algorithms both on the ground-truth evaluation and on the segmentation task by achieving both higher precision and better recall.

3,723 citations


Proceedings ArticleDOI
01 Sep 2009
TL;DR: By combining Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP) as the feature set, this work proposes a novel human detection approach capable of handling partial occlusion and achieves the best human detection performance on the INRIA dataset.
Abstract: By combining Histograms of Oriented Gradients (HOG) and Local Binary Pattern (LBP) as the feature set, we propose a novel human detection approach capable of handling partial occlusion. Two kinds of detectors, i.e., global detector for whole scanning windows and part detectors for local regions, are learned from the training data using linear SVM. For each ambiguous scanning window, we construct an occlusion likelihood map by using the response of each block of the HOG feature to the global detector. The occlusion likelihood map is then segmented by Mean-shift approach. The segmented portion of the window with a majority of negative response is inferred as an occluded region. If partial occlusion is indicated with high likelihood in a certain scanning window, part detectors are applied on the unoccluded regions to achieve the final classification on the current scanning window. With the help of the augmented HOG-LBP feature and the global-part occlusion handling method, we achieve a detection rate of 91.3% with FPPW= 10−6, 94.7% with FPPW= 10−5, and 97.9% with FPPW= 10−4 on the INRIA dataset, which, to our best knowledge, is the best human detection performance on the INRIA dataset. The global-part occlusion handling method is further validated using synthesized occlusion data constructed from the INRIA and Pascal dataset.

1,838 citations


Journal ArticleDOI
TL;DR: The recent state of the art CAD technology for digitized histopathology is reviewed and the development and application of novel image analysis technology for a few specific histopathological related problems being pursued in the United States and Europe are described.
Abstract: Over the past decade, dramatic increases in computational power and improvement in image analysis algorithms have allowed the development of powerful computer-assisted analytical approaches to radiological data. With the recent advent of whole slide digital scanners, tissue histopathology slides can now be digitized and stored in digital image form. Consequently, digitized tissue histopathology has now become amenable to the application of computerized image analysis and machine learning techniques. Analogous to the role of computer-assisted diagnosis (CAD) algorithms in medical imaging to complement the opinion of a radiologist, CAD algorithms have begun to be developed for disease detection, diagnosis, and prognosis prediction to complement the opinion of the pathologist. In this paper, we review the recent state of the art CAD technology for digitized histopathology. This paper also briefly describes the development and application of novel image analysis technology for a few specific histopathology related problems being pursued in the United States and Europe.

1,644 citations


Journal ArticleDOI
TL;DR: This work considers the problem of estimating detailed 3D structure from a single still image of an unstructured environment and uses a Markov random field (MRF) to infer a set of "plane parameters" that capture both the 3D location and 3D orientation of the patch.
Abstract: We consider the problem of estimating detailed 3D structure from a single still image of an unstructured environment. Our goal is to create 3D models that are both quantitatively accurate as well as visually pleasing. For each small homogeneous patch in the image, we use a Markov random field (MRF) to infer a set of "plane parametersrdquo that capture both the 3D location and 3D orientation of the patch. The MRF, trained via supervised learning, models both image depth cues as well as the relationships between different parts of the image. Other than assuming that the environment is made up of a number of small planes, our model makes no explicit assumptions about the structure of the scene; this enables the algorithm to capture much more detailed 3D structure than does prior art and also give a much richer experience in the 3D flythroughs created using image-based rendering, even for scenes with significant nonvertical structure. Using this approach, we have created qualitatively correct 3D models for 64.9 percent of 588 images downloaded from the Internet. We have also extended our model to produce large-scale 3D models from a few images.

1,522 citations


Journal ArticleDOI
TL;DR: Statistical shape models (SSMs) have by now been firmly established as a robust tool for segmentation of medical images as discussed by the authors, primarily made possible by breakthroughs in automatic detection of shape correspondences.

1,402 citations


Journal ArticleDOI
TL;DR: A new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently, which gives competitive and visually pleasing results for objects that are highly textured, highly structured, and even articulated.
Abstract: This paper details a new approach for learning a discriminative model of object classes, incorporating texture, layout, and context information efficiently The learned model is used for automatic visual understanding and semantic segmentation of photographs Our discriminative model exploits texture-layout filters, novel features based on textons, which jointly model patterns of texture and their spatial layout Unary classification and feature selection is achieved using shared boosting to give an efficient classifier which can be applied to a large number of classes Accurate image segmentation is achieved by incorporating the unary classifier in a conditional random field, which (i) captures the spatial interactions between class labels of neighboring pixels, and (ii) improves the segmentation of specific object instances Efficient training of the model on large datasets is achieved by exploiting both random feature selection and piecewise training methods High classification and segmentation accuracy is demonstrated on four varied databases: (i) the MSRC 21-class database containing photographs of real objects viewed under general lighting conditions, poses and viewpoints, (ii) the 7-class Corel subset and (iii) the 7-class Sowerby database used in He et al (Proceeding of IEEE Conference on Computer Vision and Pattern Recognition, vol 2, pp 695---702, June 2004), and (iv) a set of video sequences of television shows The proposed algorithm gives competitive and visually pleasing results for objects that are highly textured (grass, trees, etc), highly structured (cars, faces, bicycles, airplanes, etc), and even articulated (body, cow, etc)

1,193 citations


Journal ArticleDOI
TL;DR: A geometric-flow-based algorithm for computing a dense oversegmentation of an image, often referred to as superpixels, which yields less undersegmentation than algorithms that lack a compactness constraint while offering a significant speedup over N-cuts, which does enforce compactness.
Abstract: We describe a geometric-flow-based algorithm for computing a dense oversegmentation of an image, often referred to as superpixels. It produces segments that, on one hand, respect local image boundaries, while, on the other hand, limiting undersegmentation through a compactness constraint. It is very fast, with complexity that is approximately linear in image size, and can be applied to megapixel sized images with high superpixel densities in a matter of minutes. We show qualitative demonstrations of high-quality results on several complex images. The Berkeley database is used to quantitatively compare its performance to a number of oversegmentation algorithms, showing that it yields less undersegmentation than algorithms that lack a compactness constraint while offering a significant speedup over N-cuts, which does enforce compactness.

1,158 citations


Proceedings ArticleDOI
01 Sep 2009
TL;DR: A new dataset, H3D, is built of annotations of humans in 2D photographs with 3D joint information, inferred using anthropometric constraints, to address the classic problems of detection, segmentation and pose estimation of people in images with a novel definition of a part, a poselet.
Abstract: We address the classic problems of detection, segmentation and pose estimation of people in images with a novel definition of a part, a poselet. We postulate two criteria (1) It should be easy to find a poselet given an input image (2) it should be easy to localize the 3D configuration of the person conditioned on the detection of a poselet. To permit this we have built a new dataset, H3D, of annotations of humans in 2D photographs with 3D joint information, inferred using anthropometric constraints. This enables us to implement a data-driven search procedure for finding poselets that are tightly clustered in both 3D joint configuration space as well as 2D image appearance. The algorithm discovers poselets that correspond to frontal and profile faces, pedestrians, head and shoulder views, among others. Each poselet provides examples for training a linear SVM classifier which can then be run over the image in a multiscale scanning mode. The outputs of these poselet detectors can be thought of as an intermediate layer of nodes, on top of which one can run a second layer of classification or regression. We show how this permits detection and localization of torsos or keypoints such as left shoulder, nose, etc. Experimental results show that we obtain state of the art performance on people detection in the PASCAL VOC 2007 challenge, among other datasets. We are making publicly available both the H3D dataset as well as the poselet parameters for use by other researchers.

1,153 citations


Journal ArticleDOI
TL;DR: A comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.
Abstract: This paper presents a comparison study between 10 automatic and six interactive methods for liver segmentation from contrast-enhanced CT images. It is based on results from the "MICCAI 2007 Grand Challenge" workshop, where 16 teams evaluated their algorithms on a common database. A collection of 20 clinical images with reference segmentations was provided to train and tune algorithms in advance. Participants were also allowed to use additional proprietary training data for that purpose. All teams then had to apply their methods to 10 test datasets and submit the obtained results. Employed algorithms include statistical shape models, atlas registration, level-sets, graph-cuts and rule-based systems. All results were compared to reference segmentations five error measures that highlight different aspects of segmentation accuracy. All measures were combined according to a specific scoring system relating the obtained values to human expert variability. In general, interactive methods reached higher average scores than automatic approaches and featured a better consistency of segmentation quality. However, the best automatic methods (mainly based on statistical shape models with some additional free deformation) could compete well on the majority of test images. The study provides an insight in performance of different segmentation approaches under real-world conditions and highlights achievements and limitations of current image analysis techniques.

979 citations


Journal ArticleDOI
TL;DR: It is concluded that selecting atlases from large databases for atlas-based brain image segmentation improves the accuracy of the segmentations achieved and shows that image similarity is a suitable selection criterion.

902 citations


Proceedings ArticleDOI
01 Sep 2009
TL;DR: A region-based model which combines appearance and scene geometry to automatically decompose a scene into semantically meaningful regions and which achieves state-of-the-art performance on the tasks of both multi-class image segmentation and geometric reasoning.
Abstract: High-level, or holistic, scene understanding involves reasoning about objects, regions, and the 3D relationships between them. This requires a representation above the level of pixels that can be endowed with high-level attributes such as class of object/region, its orientation, and (rough 3D) location within the scene. Towards this goal, we propose a region-based model which combines appearance and scene geometry to automatically decompose a scene into semantically meaningful regions. Our model is defined in terms of a unified energy function over scene appearance and structure. We show how this energy function can be learned from data and present an efficient inference technique that makes use of multiple over-segmentations of the image to propose moves in the energy-space. We show, experimentally, that our method achieves state-of-the-art performance on the tasks of both multi-class image segmentation and geometric reasoning. Finally, by understanding region classes and geometry, we show how our model can be used as the basis for 3D reconstruction of the scene.

Proceedings ArticleDOI
01 Sep 2009
TL;DR: A method to identify and localize object classes in images by constructing a classifier on the histogram of local features found in each superpixel using superpixels as the basic unit of a class segmentation or pixel localization scheme.
Abstract: We propose a method to identify and localize object classes in images Instead of operating at the pixel level, we advocate the use of superpixels as the basic unit of a class segmentation or pixel localization scheme To this end, we construct a classifier on the histogram of local features found in each superpixel We regularize this classifier by aggregating histograms in the neighborhood of each superpixel and then refine our results further by using the classifier in a conditional random field operating on the superpixel graph Our proposed method exceeds the previously published state-of-the-art on two challenging datasets: Graz-02 and the PASCAL VOC 2007 Segmentation Challenge

Proceedings ArticleDOI
01 Sep 2009
TL;DR: This work proposes a hierarchical random field model, that allows integration of features computed at different levels of the quantisation hierarchy, and evaluates its efficiency on some of the most challenging data-sets for object class segmentation, and shows it obtains state-of-the-art results.
Abstract: Most methods for object class segmentation are formulated as a labelling problem over a single choice of quantisation of an image space - pixels, segments or group of segments. It is well known that each quantisation has its fair share of pros and cons; and the existence of a common optimal quantisation level suitable for all object categories is highly unlikely. Motivated by this observation, we propose a hierarchical random field model, that allows integration of features computed at different levels of the quantisation hierarchy. MAP inference in this model can be performed efficiently using powerful graph cut based move making algorithms. Our framework generalises much of the previous work based on pixels or segments. We evaluate its efficiency on some of the most challenging data-sets for object class segmentation, and show it obtains state-of-the-art results.

Journal ArticleDOI
TL;DR: A new spectral-spatial classification scheme for hyperspectral images is proposed that improves the classification accuracies and provides classification maps with more homogeneous regions, when compared to pixel wise classification.
Abstract: A new spectral-spatial classification scheme for hyperspectral images is proposed. The method combines the results of a pixel wise support vector machine classification and the segmentation map obtained by partitional clustering using majority voting. The ISODATA algorithm and Gaussian mixture resolving techniques are used for image clustering. Experimental results are presented for two hyperspectral airborne images. The developed classification scheme improves the classification accuracies and provides classification maps with more homogeneous regions, when compared to pixel wise classification. The proposed method performs particularly well for classification of images with large spatial structures and when different classes have dissimilar spectral responses and a comparable number of pixels.

Journal ArticleDOI
24 Sep 2009-Neuron
TL;DR: An automated sorting procedure is described that combines independent component analysis and image segmentation for extracting cells' locations and their dynamics with minimal human supervision and found microzones of Purkinje cells that were stable across behavioral states and in which synchronous Ca(2+) spiking rose significantly during locomotion.

Book ChapterDOI
22 Nov 2009
TL;DR: This paper proposes a parallel k -means clustering algorithm based on MapReduce, which is a simple yet powerful parallel programming technique and demonstrates that the proposed algorithm can scale well and efficiently process large datasets on commodity hardware.
Abstract: Data clustering has been received considerable attention in many applications, such as data mining, document retrieval, image segmentation and pattern classification. The enlarging volumes of information emerging by the progress of technology, makes clustering of very large scale of data a challenging task. In order to deal with the problem, many researchers try to design efficient parallel clustering algorithms. In this paper, we propose a parallel k -means clustering algorithm based on MapReduce, which is a simple yet powerful parallel programming technique. The experimental results demonstrate that the proposed algorithm can scale well and efficiently process large datasets on commodity hardware.

Journal ArticleDOI
TL;DR: A graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentations of 3- D spectral OCT image data is reported.
Abstract: With the introduction of spectral-domain optical coherence tomography (OCT), much larger image datasets are routinely acquired compared to what was possible using the previous generation of time-domain OCT. Thus, the need for 3-D segmentation methods for processing such data is becoming increasingly important. We report a graph-theoretic segmentation method for the simultaneous segmentation of multiple 3-D surfaces that is guaranteed to be optimal with respect to the cost function and that is directly applicable to the segmentation of 3-D spectral OCT image data. We present two extensions to the general layered graph segmentation method: the ability to incorporate varying feasibility constraints and the ability to incorporate true regional information. Appropriate feasibility constraints and cost functions were learned from a training set of 13 spectral-domain OCT images from 13 subjects. After training, our approach was tested on a test set of 28 images from 14 subjects. An overall mean unsigned border positioning error of 5.69 plusmn 2.41 mum was achieved when segmenting seven surfaces (six layers) and using the average of the manual tracings of two ophthalmologists as the reference standard. This result is very comparable to the measured interobserver variability of 5.71 plusmn 1.98 mum.

Journal ArticleDOI
TL;DR: MaZda as mentioned in this paper is a software package for 2D and 3D image texture analysis, which provides a complete path for quantitative analysis of image textures, including computation of texture features, procedures for feature selection and extraction, algorithms for data classification, various data visualization and image segmentation tools.

Journal ArticleDOI
TL;DR: A new measure of image similarity called the complex wavelet structural similarity (CW-SSIM) index is introduced and its applicability as a general purpose image similarity index is shown and it is demonstrated that it is computationally less expensive and robust to small rotations and translations.
Abstract: We introduce a new measure of image similarity called the complex wavelet structural similarity (CW-SSIM) index and show its applicability as a general purpose image similarity index. The key idea behind CW-SSIM is that certain image distortions lead to consistent phase changes in the local wavelet coefficients, and that a consistent phase shift of the coefficients does not change the structural content of the image. By conducting four case studies, we have demonstrated the superiority of the CW-SSIM index against other indices (e.g., Dice, Hausdorff distance) commonly used for assessing the similarity of a given pair of images. In addition, we show that the CW-SSIM index has a number of advantages. It is robust to small rotations and translations. It provides useful comparisons even without a preprocessing image registration step, which is essential for other indices. Moreover, it is computationally less expensive.

Journal ArticleDOI
TL;DR: It is shown that local combination strategies outperform global methods in segmenting high-contrast structures, while global techniques are less sensitive to noise when contrast between neighboring structures is low.
Abstract: It has been shown that employing multiple atlas images improves segmentation accuracy in atlas-based medical image segmentation. Each atlas image is registered to the target image independently and the calculated transformation is applied to the segmentation of the atlas image to obtain a segmented version of the target image. Several independent candidate segmentations result from the process, which must be somehow combined into a single final segmentation. Majority voting is the generally used rule to fuse the segmentations, but more sophisticated methods have also been proposed. In this paper, we show that the use of global weights to ponderate candidate segmentations has a major limitation. As a means to improve segmentation accuracy, we propose the generalized local weighting voting method. Namely, the fusion weights adapt voxel-by-voxel according to a local estimation of segmentation performance. Using digital phantoms and MR images of the human brain, we demonstrate that the performance of each combination technique depends on the gray level contrast characteristics of the segmented region, and that no fusion method yields better results than the others for all the regions. In particular, we show that local combination strategies outperform global methods in segmenting high-contrast structures, while global techniques are less sensitive to noise when contrast between neighboring structures is low. We conclude that, in order to achieve the highest overall segmentation accuracy, the best combination method for each particular structure must be selected.

Journal ArticleDOI
TL;DR: An area-based local stereo matching algorithm for accurate disparity estimation across all image regions, and is among the best performing local stereo methods according to the benchmark Middlebury stereo evaluation.
Abstract: We propose an area-based local stereo matching algorithm for accurate disparity estimation across all image regions. A well-known challenge to local stereo methods is to decide an appropriate support window for the pixel under consideration, adapting the window shape or the pixelwise support weight to the underlying scene structures. Our stereo method tackles this problem with two key contributions. First, for each anchor pixel an upright cross local support skeleton is adaptively constructed, with four varying arm lengths decided on color similarity and connectivity constraints. Second, given the local cross-decision results, we dynamically construct a shape-adaptive full support region on the fly, merging horizontal segments of the crosses in the vertical neighborhood. Approximating image structures accurately, the proposed method is among the best performing local stereo methods according to the benchmark Middlebury stereo evaluation. Additionally, it reduces memory consumption significantly thanks to our compact local cross representation. To accelerate matching cost aggregation performed in an arbitrarily shaped 2-D region, we also propose an orthogonal integral image technique, yielding a speedup factor of 5-15 over the straightforward integration.

Journal ArticleDOI
TL;DR: In this paper, the applicability of various thresholding and locally adaptive segmentation techniques for industrial and synchrotron X-ray CT images of natural and artificial porous media was investigated.
Abstract: [1] Nondestructive imaging methods such as X-ray computed tomography (CT) yield high-resolution, three-dimensional representations of pore space and fluid distribution within porous materials. Steadily increasing computational capabilities and easier access to X-ray CT facilities have contributed to a recent surge in microporous media research with objectives ranging from theoretical aspects of fluid and interfacial dynamics at the pore scale to practical applications such as dense nonaqueous phase liquid transport and dissolution. In recent years, significant efforts and resources have been devoted to improve CT technology, microscale analysis, and fluid dynamics simulations. However, the development of adequate image segmentation methods for conversion of gray scale CT volumes into a discrete form that permits quantitative characterization of pore space features and subsequent modeling of liquid distribution and flow processes seems to lag. In this paper we investigated the applicability of various thresholding and locally adaptive segmentation techniques for industrial and synchrotron X-ray CT images of natural and artificial porous media. A comparison between directly measured and image-derived porosities clearly demonstrates that the application of different segmentation methods as well as associated operator biases yield vastly differing results. This illustrates the importance of the segmentation step for quantitative pore space analysis and fluid dynamics modeling. Only a few of the tested methods showed promise for both industrial and synchrotron tomography. Utilization of local image information such as spatial correlation as well as the application of locally adaptive techniques yielded significantly better results.

Proceedings ArticleDOI
20 Jun 2009
TL;DR: A fully automatic learning framework that is able to learn robust scene models from noisy Web data such as images and user tags from Flickr.com that significantly outperforms state-of-the-art algorithms.
Abstract: Given an image, we propose a hierarchical generative model that classifies the overall scene, recognizes and segments each object component, as well as annotates the image with a list of tags. To our knowledge, this is the first model that performs all three tasks in one coherent framework. For instance, a scene of a `polo game' consists of several visual objects such as `human', `horse', `grass', etc. In addition, it can be further annotated with a list of more abstract (e.g. `dusk') or visually less salient (e.g. `saddle') tags. Our generative model jointly explains images through a visual model and a textual model. Visually relevant objects are represented by regions and patches, while visually irrelevant textual annotations are influenced directly by the overall scene class. We propose a fully automatic learning framework that is able to learn robust scene models from noisy Web data such as images and user tags from Flickr.com. We demonstrate the effectiveness of our framework by automatically classifying, annotating and segmenting images from eight classes depicting sport scenes. In all three tasks, our model significantly outperforms state-of-the-art algorithms.

Proceedings ArticleDOI
20 Jun 2009
TL;DR: It is shown how a set of rules describing geometric constraints between groups of segments can be used to prune scene interpretation hypotheses and to generate the most plausible interpretation.
Abstract: We study the problem of generating plausible interpretations of a scene from a collection of line segments automatically extracted from a single indoor image. We show that we can recognize the three dimensional structure of the interior of a building, even in the presence of occluding objects. Several physically valid structure hypotheses are proposed by geometric reasoning and verified to find the best fitting model to line segments, which is then converted to a full 3D model. Our experiments demonstrate that our structure recovery from line segments is comparable with methods using full image appearance. Our approach shows how a set of rules describing geometric constraints between groups of segments can be used to prune scene interpretation hypotheses and to generate the most plausible interpretation.

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This work provides extensive experimental evaluation to demonstrate that, when coupled to a high-performance contour detector, the OWT-UCM algorithm produces state-of-the-art image segmentations.
Abstract: We propose a generic grouping algorithm that constructs a hierarchy of regions from the output of any contour detector. Our method consists of two steps, an oriented watershed transform (OWT) to form initial regions from contours, followed by construction of an ultra-metric contour map (UCM) defining a hierarchical segmentation. We provide extensive experimental evaluation to demonstrate that, when coupled to a high-performance contour detector, the OWT-UCM algorithm produces state-of-the-art image segmentations. These hierarchical segmentations can optionally be further refined by user-specified annotations.

Proceedings ArticleDOI
01 Sep 2009
TL;DR: A solution to the challenging problem of estimating human body shape from a single photograph or painting is described and a novel application in which 3D human models are extracted from archival photographs and paintings is demonstrated.
Abstract: We describe a solution to the challenging problem of estimating human body shape from a single photograph or painting Our approach computes shape and pose parameters of a 3D human body model directly from monocular image cues and advances the state of the art in several directions First, given a user-supplied estimate of the subject's height and a few clicked points on the body we estimate an initial 3D articulated body pose and shape Second, using this initial guess we generate a tri-map of regions inside, outside and on the boundary of the human, which is used to segment the image using graph cuts Third, we learn a low-dimensional linear model of human shape in which variations due to height are concentrated along a single dimension, enabling height-constrained estimation of body shape Fourth, we formulate the problem of parametric human shape from shading We estimate the body pose, shape and reflectance as well as the scene lighting that produces a synthesized body that robustly matches the image evidence Quantitative experiments demonstrate how smooth shading provides powerful constraints on human shape We further demonstrate a novel application in which we extract 3D human models from archival photographs and paintings

Journal ArticleDOI
TL;DR: A new region-based active contour model in a variational level set formulation for image segmentation that is able to distinguish regions with similar intensity means but different variances and is demonstrated by applying the method on noisy and texture images.

Journal ArticleDOI
TL;DR: This paper presents an algorithm for segmenting and measuring retinal vessels, by growing a ldquoRibbon of Twinsrdquo active contour model, which uses two pairs of contours to capture each vessel edge, while maintaining width consistency.
Abstract: This paper presents an algorithm for segmenting and measuring retinal vessels, by growing a ldquoRibbon of Twinsrdquo active contour model, which uses two pairs of contours to capture each vessel edge, while maintaining width consistency. The algorithm is initialized using a generalized morphological order filter to identify approximate vessels centerlines. Once the vessel segments are identified the network topology is determined using an implicit neural cost function to resolve junction configurations. The algorithm is robust, and can accurately locate vessel edges under difficult conditions, including noisy blurred edges, closely parallel vessels, light reflex phenomena, and very fine vessels. It yields precise vessel width measurements, with subpixel average width errors. We compare the algorithm with several benchmarks from the literature, demonstrating higher segmentation sensitivity and more accurate width measurement.

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper presents a unified framework for object detection, segmentation, and classification using regions using a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis.
Abstract: This paper presents a unified framework for object detection, segmentation, and classification using regions. Region features are appealing in this context because: (1) they encode shape and scale information of objects naturally; (2) they are only mildly affected by background clutter. Regions have not been popular as features due to their sensitivity to segmentation errors. In this paper, we start by producing a robust bag of overlaid regions for each image using Arbeldez et al., CVPR 2009. Each region is represented by a rich set of image cues (shape, color and texture). We then learn region weights using a max-margin framework. In detection and segmentation, we apply a generalized Hough voting scheme to generate hypotheses of object locations, scales and support, followed by a verification classifier and a constrained segmenter on each hypothesis. The proposed approach significantly outperforms the state of the art on the ETHZ shape database(87.1% average detection rate compared to Ferrari et al. 's 67.2%), and achieves competitive performance on the Caltech 101 database.

Proceedings ArticleDOI
01 Sep 2009
TL;DR: This paper discusses how the bounding box can be further used to impose a powerful topological prior, which prevents the solution from excessive shrinking and ensures that the user-provided box bounds the segmentation in a sufficiently tight way.
Abstract: User-provided object bounding box is a simple and popular interaction paradigm considered by many existing interactive image segmentation frameworks. However, these frameworks tend to exploit the provided bounding box merely to exclude its exterior from consideration and sometimes to initialize the energy minimization. In this paper, we discuss how the bounding box can be further used to impose a powerful topological prior, which prevents the solution from excessive shrinking and ensures that the user-provided box bounds the segmentation in a sufficiently tight way. The prior is expressed using hard constraints incorporated into the global energy minimization framework leading to an NP-hard integer program. We then investigate the possible optimization strategies including linear relaxation as well as a new graph cut algorithm called pinpointing. The latter can be used either as a rounding method for the fractional LP solution, which is provably better than thresholding-based rounding, or as a fast standalone heuristic. We evaluate the proposed algorithms on a publicly available dataset, and demonstrate the practical benefits of the new prior both qualitatively and quantitatively.