scispace - formally typeset
Search or ask a question

Showing papers on "Lipotoxicity published in 2004"


Journal ArticleDOI
01 Feb 2004-Diabetes
TL;DR: Evidence is reviewed that patients with type 2 diabetes continually undergo oxidative stress, that elevated glucose concentrations increase levels of reactive oxygen species inβ-cells, that islets have intrinsically low antioxidant enzyme defenses, and that antioxidant drugs and overexpression of antioxidant enzymes protect β-cells from glucose toxicity.
Abstract: The relentless decline in β-cell function frequently observed in type 2 diabetic patients, despite optimal drug management, has variously been attributed to glucose toxicity and lipotoxicity. The former theory posits hyperglycemia, an outcome of the disease, as a secondary force that further damages β-cells. The latter theory suggests that the often-associated defect of hyperlipidemia is a primary cause of β-cell dysfunction. We review evidence that patients with type 2 diabetes continually undergo oxidative stress, that elevated glucose concentrations increase levels of reactive oxygen species in β-cells, that islets have intrinsically low antioxidant enzyme defenses, that antioxidant drugs and overexpression of antioxidant enzymes protect β-cells from glucose toxicity, and that lipotoxicity, to the extent it can be attributable to hyperlipidemia, occurs only in the context of preexisting hyperglycemia, whereas glucose toxicity can occur in the absence of hyperlipidemia.

817 citations


Journal ArticleDOI
TL;DR: In a dietary murine model of NAFLD, either genetic or pharmacological inactivation of ctsb protected against development of hepatic steatosis, liver injury, and insulin resistance with its associated “dysmetabolic syndrome.”

739 citations


Journal ArticleDOI
TL;DR: A subgroup of patients with heart failure and severe metabolic dysregulation is identified characterized by intramyocardial triglyceride overload and changes in gene expression that are associated with contractile dysfunction.
Abstract: In animal models of lipotoxicity, accumulation of triglycerides within cardiomyocytes is associated with contractile dysfunction. However, whether intramyocardial lipid deposition is a feature of human heart failure remains to be established. We hypothesized that intramyocardial lipid accumulation is a common feature of non-ischemic heart failure and is associated with changes in gene expression similar to those found in an animal model of lipotoxicity. Intramyocardial lipid staining with oil red O and gene expression analysis was performed on heart tissue from 27 patients (9 female) with non-ischemic heart failure. We determined intramyocardial lipid, gene expression, and contractile function in hearts from 6 Zucker diabetic fatty (ZDF) and 6 Zucker lean (ZL) rats. Intramyocardial lipid overload was present in 30% of non-ischemic failing hearts. The highest levels of lipid staining were observed in patients with diabetes and obesity (BMI>30). Intramyocardial lipid deposition was associated with an up-regulation of peroxisome proliferator-activated receptor alpha (PPARalpha) -regulated genes, myosin heavy chain beta (MHC-beta), and tumor necrosis factor alpha (TNF-alpha). Intramyocardial lipid overload in the hearts of ZDF rats was associated with contractile dysfunction and changes in gene expression similar to changes found in failing human hearts with lipid overload. Our findings identify a subgroup of patients with heart failure and severe metabolic dysregulation characterized by intramyocardial triglyceride overload and changes in gene expression that are associated with contractile dysfunction.

725 citations


Journal ArticleDOI
TL;DR: Thiazolidinediones enhance adipocyte insulin sensitivity, inhibit lipolysis, reduce plasma FFA, and favorably influence the production of adipocytokines, contributing to improvements in muscle/hepatic insulin sensitivity and pancreatic function in type 2 diabetics.
Abstract: Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance in liver and muscle and impaired insulin secretion. Considerable evidence also implicates deranged adipocyte metabolism and altered fat topography in the pathogenesis of glucose intolerance in T2DM. 1) Fat cells are resistant to insulin’s antilipolytic effect, leading to day-long elevated plasma FFA levels. Chronically increased plasma FFA stimulates gluconeogenesis, induces hepatic/muscle insulin resistance, and impairs insulin secretion in genetically predisposed individuals. These FFA-induced disturbances are referred to as lipotoxicity. 2) Dysfunctional fat cells produce excessive amounts of insulin resistance-inducing, inflammatory, and atherosclerotic-provoking cytokines and fail to secrete normal amounts of insulin-sensitizing adipocytokines. 3) Enlarged fat cells are insulin resistant and have diminished capacity to store fat. When adipocyte storage capacity is exceeded, lipid “overflows” into muscle, liver, and perhaps -cells, causing muscle/ hepatic insulin resistance and impaired insulin secretion. Thiazolidinediones enhance adipocyte insulin sensitivity, inhibit lipolysis, reduce plasma FFA, and favorably influence the production of adipocytokines. Thiazolidinediones also redistribute fat within the body (decreased visceral and hepatic fat; increased sc fat) and decrease intracellular concentrations of triglyceride metabolites in muscle, liver, and -cells, contributing to improvements in muscle/hepatic insulin sensitivity and pancreatic function in type 2 diabetics.

623 citations


Journal ArticleDOI
01 Jun 2004-Diabetes
TL;DR: An integrative view is provided on the interrelation between decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations in type 2 diabetes.
Abstract: Recent evidence points toward decreased oxidative capacity and mitochondrial aberrations as a major contributor to the development of insulin resistance and type 2 diabetes. In this article we will provide an integrative view on the interrelation between decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations in type 2 diabetes. Type 2 diabetes is characterized by disturbances in fatty acid metabolism and is accompanied by accumulation of fatty acids in nonadipose tissues. In metabolically active tissues, such as skeletal muscle, fatty acids are prone to so-called oxidative damage. In addition to producing energy, mitochondria are also a major source of reactive oxygen species, which can lead to lipid peroxidation. In particular, the mitochondrial matrix, which contains DNA, RNA, and numerous enzymes necessary for substrate oxidation, is sensitive to peroxide-induced oxidative damage and needs to be protected against the formation and accumulation of lipids and lipid peroxides. Recent evidence reports that mitochondrial uncoupling is involved in the protection of the mitochondrial matrix against lipid-induced mitochondrial damage. Disturbances in this protection mechanism can contribute to the development of type 2 diabetes.

400 citations


Journal ArticleDOI
TL;DR: In a dietary murine model of NAFLD, either genetic or pharmacological inactivation of ctsb protected against development of hepatic steatosis, liver injury, and insulin resistance with its associated "dysmetabolic syndrome."
Abstract: Nonalcoholic fatty liver disease (NAFLD) is a serious health problem. Although NAFLD represents a form of lipotoxicity, its pathogenesis remains poorly understood. The aim of this study was to examine the cellular mechanisms involved in free fatty acid (FFA)-mediated hepatic lipotoxicity. FFA treatment of liver cells resulted in Bax translocation to lysosomes and lysosomal destabilization with release of cathepsin B (ctsb), a lysosomal cysteine protease, into the cytosol. This process was also partially dependent on ctsb. Lysosomal destabilization resulted in nuclear factor kappa B-dependent tumor necrosis factor alpha expression. Release of ctsb into the cytoplasm was also observed in humans with NAFLD and correlated with disease severity. In a dietary murine model of NAFLD, either genetic or pharmacological inactivation of ctsb protected against development of hepatic steatosis, liver injury, and insulin resistance with its associated \"dysmetabolic syndrome.\" In conclusion, these data support a lipotoxic model of FFA-mediated lysosomal destabilization.

361 citations


Journal ArticleDOI
TL;DR: Accumulation of fat around blood vessels (perivascular fat) may affect vascular function in a paracrine manner, as perivascularfat cells secrete vascular relaxing factors, proatherogenic cytokines and smooth muscle cell growth factors, which could mechanically contribute to the increased vascular stiffness seen in obesity.
Abstract: In humans and most animal models, the development of obesity leads not only to increased fat depots in classical adipose tissue locations but also to significant lipid deposits within and around other tissues and organs, a phenomenon known as ectopic fat storage The purpose of this review is to explore the possible locations of ectopic fat in key target-organs of cardiovascular control (heart, blood vessels and kidneys) and to propose how ectopic fat storage can play a role in the pathogenesis of cardiovascular diseases associated with obesity In animals fed a high-fat diet, cardiac fat depots within and around the heart impair both systolic and diastolic functions, and may in the long-term promote heart failure Accumulation of fat around blood vessels (perivascular fat) may affect vascular function in a paracrine manner, as perivascular fat cells secrete vascular relaxing factors, proatherogenic cytokines and smooth muscle cell growth factors Furthermore, high amounts of perivascular fat could mechanically contribute to the increased vascular stiffness seen in obesity Finally, accumulation of fat in the renal sinus may limit the outflow of blood and lymph from the kidney, which would alter intrarenal physical forces and promote sodium reabsorption and arterial hypertension Taken together, ectopic fat storage in key target-organs of cardiovascular control may impair their functions, contributing to the increased prevalence of cardiovascular diseases in obese subjects

268 citations


Journal ArticleDOI
TL;DR: It is proposed that higher free fatty acid oxidation rates prevent accumulation of triglyceride in UCP2(–/–) islets, such accumulation being a phenomenon associated with lipotoxicity.

214 citations


Journal ArticleDOI
TL;DR: The balance between storage and efficient utilization of muscle triglycerides is likely a key to a better understanding of the interaction between dysregulated fat and glucose metabolism by muscle in both adults and children.
Abstract: In addition to obesity, many factors, including the distribution of body fat, contribute to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Lipid contained within skeletal muscle as triglyceride is a parameter of regional fat accumulation thought to be an important link among obesity, insulin resistance, and type 2 diabetes, even in the pediatric population. Intramuscular triglycerides can also be a fuel source for healthy muscle during periods of physical activity. Thus, the balance between storage and efficient utilization of muscle triglycerides is likely a key to a better understanding of the interaction between dysregulated fat and glucose metabolism by muscle in both adults and children. This review examines the evidence that muscle lipid accumulation is linked with insulin resistance and type 2 diabetes of both adults and children. In addition, we explore the potential mechanisms for muscle lipid accumulation as well as the effects of weight loss and physical activity on muscle lipid. Further defining the links between muscle lipid accumulation and insulin action should help develop more effective strategies to prevent or treat type 2 diabetes and other obesity-associated disorders.

199 citations


Journal ArticleDOI
TL;DR: The role of adipose tissue in the pathogenesis of type 2 diabetes is examined in detail and the potential of PPAR agonists to improve the management of patients with the condition is highlighted.
Abstract: Type 2 diabetes is characterized by insulin resistance and impaired insulin secretion. Considerable evidence implicates altered fat topography and defects in adipocyte metabolism in the pathogenesis of type 2 diabetes. In individuals who develop type 2 diabetes, fat cells tend to be enlarged. Enlarged fat cells are resistant to the antilipolytic effects of insulin, leading to day-long elevated plasma free fatty acid (FFA) levels. Chronically increased plasma FFA stimulates gluconeogenesis, induces hepatic and muscle insulin resistance, and impairs insulin secretion in genetically predisposed individuals. These FFA-induced disturbances are referred to as lipotoxicity. Enlarged fat cells also have diminished capacity to store fat. When adipocyte storage capacity is exceeded, lipid 'overflows' into muscle and liver, and possibly the beta-cells of the pancreas, exacerbating insulin resistance and further impairing insulin secretion. In addition, dysfunctional fat cells produce excessive amounts of insulin resistance-inducing, inflammatory and atherosclerosis-provoking cytokines, and fail to secrete normal amounts of insulin-sensitizing cytokines. As more evidence emerges, there is a stronger case for targeting adipose tissue in the treatment of type 2 diabetes. Peroxisome-proliferator activated receptor gamma (PPARgamma) agonists, for example the thiazolidinediones, redistribute fat within the body (decrease visceral and hepatic fat; increase subcutaneous fat) and have been shown to enhance adipocyte insulin sensitivity, inhibit lipolysis, reduce plasma FFA and favourably influence the production of adipocytokines. This article examines in detail the role of adipose tissue in the pathogenesis of type 2 diabetes and highlights the potential of PPAR agonists to improve the management of patients with the condition.

194 citations


Journal ArticleDOI
TL;DR: This research focuses on the mechanisms causing lipotoxicity aiming to identify suitable strategies to prevent or at least retard the development of the metabolic syndrome and suggests that by examining hypotheses that encompass multiple organs and the partitioning of energy between these organs, a suitable strategy can be devised for the treatment of chronic obesity.
Abstract: Obesity and type 2 diabetes mellitus are the major noncommunicable public health problem of the 21st century. The best strategy to tackle this problem is to develop strategies to prevent/treat obesity. However, it is becoming clear that despite successful research identifying weight regulatory pathways, the development of the obesity epidemic is outpacing scientific progress. The lack of success controlling the obesity epidemic in an aging population will result in another subsequent uncontrolled epidemic of complications. Our research focuses on the mechanisms causing lipotoxicity aiming to identify suitable strategies to prevent or at least retard the development of the metabolic syndrome. Previous work using transgenic and knockout mouse models has shown an interplay between white adipose tissue and skeletal muscle linking fatty acid (FA) synthesis with reciprocal effects on FA oxidation. Work from our lab and others suggests that defective adipose tissue is a key link between obesity, insulin resistance and type 2 diabetes mellitus by promoting the development of lipotoxicity in peripheral tissues. We propose a series of models to describe the process by which the adipose tissue could react to an energy-rich environment and responds depending on genetic and physiological factors, impacting on the functions of other peripheral tissues. We suggest that by examining hypotheses that encompass multiple organs and the partitioning of energy between these organs, a suitable strategy can be devised for the treatment of chronic obesity.

Journal ArticleDOI
TL;DR: The biochemical mechanisms responsible for lower fatty acid oxidation involve reduced carnitine palmitoyl transferase activity, as a likely consequence of increased intracellular concentrations of malonyl‐CoA; reduced glycogen synthase activity; and impairment of insulin signalling and glucose transport.
Abstract: Globalization and global market have contributed to increased consumption of high-fat, energy-dense diets, particularly rich in saturated fatty acids( SFAs). Polyunsaturated fatty acids (PUFAs) regulate fuel partitioning within the cells by inducing their own oxidation through the reduction of lipogenic gene expression and the enhancement of the expression of those genes controlling lipid oxidation and thermogenesis. Moreover, PUFAs prevent insulin resistance by increasing membrane fluidity and GLUT4 transport. In contrast, SFAs are stored in non-adipocyte cells as triglycerides (TG) leading to cellular damage as a sequence of their lipotoxicity. Triglyceride accumulation in skeletal muscle cells (IMTG) derives from increased FA uptake coupled with deficient FA oxidation. High levels of circulating FAs enhance the expression of FA translocase the FA transport proteins within the myocites. The biochemical mechanisms responsible for lower fatty acid oxidation involve reduced carnitine palmitoyl transferase (CPT) activity, as a likely consequence of increased intracellular concentrations of malonyl-CoA; reduced glycogen synthase activity; and impairment of insulin signalling and glucose transport. The depletion of IMTG depots is strictly associated with an improvement of insulin sensitivity, via a reduced acetyl-CoA carboxylase (ACC) mRNA expression and an increased GLUT4 expression and pyruvate dehydrogenase (PDH) activity. In pancreatic islets, TG accumulation causes impairment of insulin secretion. In rat models, beta-cell dysfunction is related to increased triacylglycerol content in islets, increased production of nitric oxide, ceramide synthesis and beta-cell apoptosis. The decreased insulin gene promoter activity and binding of the pancreas-duodenum homeobox-1 (PDX-1) transcription factor to the insulin gene seem to mediate TG effect in islets. In humans, acute and prolonged effects of FAs on glucose-stimulated insulin secretion have been widely investigated as well as the effect of high-fat diets on insulin sensitivity and secretion and on the development of type 2 diabetes.

Journal ArticleDOI
TL;DR: PPARgamma mRNA is expressed in human pancreatic islets, with predominance of PPARgammas(2); exposure to FFA downregulates PPARGamma(2) and insulin mRNA expression and inhibits glucose-stimulated insulin secretion; exposure to PPargamma agonists can prevent these effects.
Abstract: Peroxisome proliferator-activated receptors (PPARs) are a subgroup of the superfamily of nuclear receptors, with three distinct main types: α, β and γ (subdivided into γ1 and γ2). Recently, the pre...

Journal ArticleDOI
TL;DR: It is concluded that obesity-level hyperleptinemia protects the heart from lipotoxicity.
Abstract: The physiologic function of the progressive hyperleptinemia of diet-induced obesity is unknown. However, that lipotoxicity in nonadipose tissues of congenitally unleptinized obese rodents is far greater than in hyperleptinemic diet-induced obesity rodents has suggested an antilipotoxic role. To test this hypothesis, mice with severe lipotoxic cardiomyopathy, induced transgenically by cardiomyocyte-specific overexpression of the acyl CoA synthase (ACS) gene, were made hyperleptinemic by treatment with recombinant adenovirus containing the leptin cDNA. Normoleptinemic control ACS-transgenic mice developed severe dilated cardiomyopathy with thickened left ventricular walls and profound impairment of systolic function on echocardiogram; histologically, there was severe myofiber disorganization and interstitial fibrosis, with intracytoplasmic lipid vacuoles identifiable by electron microscope. By contrast, the hearts of hyperleptinemic ACS-transgenic mice appeared normal, with normal echocardiograms and cardiac triglyceride (TG) contents. Their lower myocardial TG content was ascribed primarily to profound lowering of plasma TG and free fatty acids; free fatty acids were 17% of normal at 8 weeks. Additionally, enhanced myocardial AMP-activated protein kinase phosphorylation may have increased fatty acid oxidation, thereby contributing to the lowering of lipid stores. We conclude that obesity-level hyperleptinemia protects the heart from lipotoxicity.

Journal ArticleDOI
TL;DR: A number of hormones, including acylation-stimulating protein, leptin, adiponectin, tumour necrosis factor alpha, interleukin-6, and resistin are defined, defining their changes induced in obesity and diabetes mellitus and highlighting their functional properties that may protect or worsen lipid metabolism.
Abstract: That obesity is associated with insulin resistance and type II diabetes mellitus is well accepted. Overloading of white adipose tissue beyond its storage capacity leads to lipid disorders in non-ad...

Journal ArticleDOI
01 May 2004
TL;DR: It is suggested that UCP3 has an important physiological function in facilitating outward transport from the mitochondrial matrix of fatty acid anions that cannot be oxidized, thereby protecting against lipid-induced mitochondrial damage.
Abstract: The physiological function of the mitochondrial uncoupling protein (UCP), UCP3, is still under debate. There is, however, ample evidence to indicate that, in contrast to UCP1, the primary function of UCP3 is not the dissipation of energy. Rather, several lines of evidence suggest that UCP3 is associated with cellular fatty acid metabolism. The highest levels of expression of UCP3 have been found in type 2 glycolytic muscle fibres, and fasting and high-fat diets up regulate UCP3. This up-regulation is most pronounced in muscle with a low fat oxidative capacity. Acute exercise also up regulates UCP3, and this effect has been shown to be a result of the exercise-induced increase in plasma fatty acid levels. In contrast, regular physical activity, which increases fat oxidative capacity, reduces UCP3 content. Based on these data it has been postulated that UCP3 functions to export those fatty acids that cannot be oxidized from the mitochondrial matrix, in order to prevent fatty acid accumulation inside the matrix. Several experiments have been conducted to test this hypothesis. Blocking carnitine palmitoyltransferase 1, thereby reducing fat oxidative capacity, rapidly induces UCP3. High-fat diets, which increase the mitochondrial supply of fatty acids, also up regulate UCP. However, feeding a similar amount of medium-chain fatty acids, which can be oxidized inside the mitochondrial matrix and therefore does not need to be exported from the matrix, does not affect UCP3 protein levels. In addition, UCP3 is increased in patients with defective beta-oxidation and is reduced after restoring oxidative capacity. In conclusion, it is suggested that UCP3 has an important physiological function in facilitating outward transport from the mitochondrial matrix of fatty acid anions that cannot be oxidized, thereby protecting against lipid-induced mitochondrial damage.

Journal ArticleDOI
TL;DR: This results suggest that the direct effect of leptin in stimulating thermogenesis in skeletal muscle is mediated by substrate cycling between de novo lipogenesis and lipid oxidation, and that this cycle requires both PI3K and AMPK signaling.

Journal ArticleDOI
01 Jan 2004-Diabetes
TL;DR: Findings indicate that chronic OA exposure can impair beta-cell function through ROS-dependent and -independent mechanisms.
Abstract: Oligonucleotide microarrays were used to define oleic acid (OA)-regulated gene expression and proteomic technology to screen protein kinases in MIN6 insulinoma cells. The effects of oxidative stress caused by OA and potential protective effects of N-acetyl-L-cysteine (NAC), a scavenger of reactive oxygen species (ROS), on global gene expression and beta-cell function were investigated. Long-term exposure of MIN6 cells to OA led to a threefold increase in basal insulin secretion, a 50% decrease in insulin content, an inhibition of glucose-stimulated insulin secretion (GSIS), and a twofold increase in the level of ROS. The addition of NAC normalized both the OA-induced insulin content and ROS elevation, but it failed to restore GSIS. Microarray studies and subsequent quantitative PCR analysis showed that OA consistently regulated the expression of 45 genes involved in metabolism, cell growth, signal transduction, transcription, and protein processing. The addition of NAC largely normalized the expression of the OA-regulated genes involved in cell growth and differentiation but not other functions. A protein kinase screen showed that OA regulated the expression and/or phosphorylation levels of kinases involved in stress-response mitogen-activated protein kinase, phosphatidylinositol 3-kinase, and cell cycle control pathways. Importantly, these findings indicate that chronic OA exposure can impair beta-cell function through ROS-dependent and -independent mechanisms.

Journal ArticleDOI
01 Nov 2004-Diabetes
TL;DR: It is demonstrated that PPAR-gamma protects islets from lipotoxicity by regulating TG partitioning among tissues and that a PPAR -gamma agonist can restore impaired insulin secretion under conditions of islet fat accumulation.
Abstract: Heterozygous peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-deficient (PPARgamma(+/-)) mice were protected from high-fat diet-induced insulin resistance. To determine the impact of systemic reduction of PPAR-gamma activity on beta-cell function, we investigated insulin secretion in PPARgamma(+/-) mice on a high-fat diet. Glucose-induced insulin secretion in PPARgamma(+/-) mice was impaired in vitro. The tissue triglyceride (TG) content of the white adipose tissue, skeletal muscle, and liver was decreased in PPARgamma(+/-) mice, but it was unexpectedly increased in the islets, and the increased TG content in the islets was associated with decreased glucose oxidation. Administration of a PPAR-gamma agonist, pioglitazone, reduced the islet TG content in PPARgamma(+/-) mice on a high-fat diet and ameliorated the impaired insulin secretion in vitro. Our results demonstrate that PPAR-gamma protects islets from lipotoxicity by regulating TG partitioning among tissues and that a PPAR-gamma agonist can restore impaired insulin secretion under conditions of islet fat accumulation.

Journal ArticleDOI
TL;DR: Different nutrients affect common metabolic pathways and thereby induce insulin resistance in humans and the results do not support the traditional concept of direct substrate competition with glucose for mitochondrial oxidation but indicate that the cellular mechanisms of such lipotoxicity and "proteotoxicity" might primarily affect the insulin signaling cascade.
Abstract: Nutrient excess is associated with reduced insulin sensitivity (insulin resistance) and plays a central role in the pathogenesis of type 2 diabetes. Recently, free fatty acids as well as amino acids were shown to induce insulin resistance by decreasing glucose transport/phosphorylation with subsequent impairment of glycogen synthesis in human skeletal muscle. These results do not support the traditional concept of direct substrate competition with glucose for mitochondrial oxidation but indicate that the cellular mechanisms of such lipotoxicity and "proteotoxicity" might primarily affect the insulin signaling cascade. The signaling pathways involved in nutrient dependent modulation of insulin action include protein kinase C isoforms and IkappaB kinase. Therefore, pharmacological modulation of these enzymes might represent a promising target for future treatment of insulin resistance. Finally, hyperglycemia which occurs late in the insulin resistance syndrome further augments insulin resistance by mechanisms summarized as glucose toxicity. Chronic hyperglycemia might lead to inhibition of lipid oxidation and thereby to accumulation of intracellular lipid metabolites. Therefore, glucotoxicity might be in part indirectly caused by lipotoxicity (glucolipotoxicity). In conclusion, different nutrients affect common metabolic pathways and thereby induce insulin resistance in humans.

Journal ArticleDOI
TL;DR: The results suggest that UCP-2 down-regulation and AMPK activation could be candidate targets for releasing beta-cells from lipotoxicity.
Abstract: Triglyceride (TG) accumulation in pancreatic beta-cells is thought to be associated with impaired insulin secretory response to glucose (lipotoxicity). To better understand the mechanism of the impaired insulin secretory response to glucose in beta-cell lipotoxicity, we overexpressed a constitutively active form of the sterol regulatory element-binding protein- 1c (SREBP-1c), a master transcriptional factor of lipogenesis, in INS-1 cells with an adenoviral vector. This treatment was associated with strong activation of transcription of the genes involved in fatty acid biosynthesis, increased cellular TG content, severely blunted glucose-stimulated insulin secretion, and enhanced expression of the uncoupling protein-2 (UCP-2), which supposedly dissipates the mitochondrial electrochemical potential. To decrease the up-regulated UCP-2 expression, small interfering RNA for UCP-2 was used. Introduction of the small interfering RNA increased the ATP/ADP ratio and partially rescued the glucose-stimulated insulin secretion in the cells overexpressing SREBP-1c, but did not affect the cellular TG content. Next, the effect of the AMP-activated protein kinase (AMPK) agonist, 5-amino-4-imidazolecarboxamide riboside, was examined in the lipotoxicity model. Exposure of the cells with lipotoxicity to 5-amino-4-imidazolecarboxamide riboside increased free fatty acid oxidation, partially reversed the TG accumulation, phosphorylated AMPK and acetyl-coenzyme A carboxylase, and improved the impaired glucose-stimulated insulin secretion. These results suggest that UCP-2 down-regulation and AMPK activation could be candidate targets for releasing beta-cells from lipotoxicity.

Journal ArticleDOI
TL;DR: It is proposed that this energy-dissipating substrate cycling that links glucose and lipid metabolism to thermogenesis could function as a ‘fine-tuning’ mechanism that regulates intramyocellular lipid homeostasis, and hence contributes to the protection of skeletal muscle against lipotoxicity.
Abstract: Life is a combustion, but how the major fuel substrates that sustain human life compete and interact with each other for combustion has been at the epicenter of research into the pathogenesis of insulin resistance ever since Randle proposed a 'glucose-fatty acid cycle' in 1963. Since then, several features of a mutual interaction that is characterized by both reciprocality and dependency between glucose and lipid metabolism have been unravelled, namely: the inhibitory effects of elevated concentrations of fatty acids on glucose oxidation (via inactivation of mitochondrial pyruvate dehydrogenase or via desensitization of insulin-mediated glucose transport),the inhibitory effects of elevated concentrations of glucose on fatty acid oxidation (via malonyl-CoA regulation of fatty acid entry into the mitochondria), and more recentlythe stimulatory effects of elevated concentrations of glucose on de novo lipogenesis, that is, synthesis of lipids from glucose (via SREBP1c regulation of glycolytic and lipogenic enzymes). This paper first revisits the physiological significance of these mutual interactions between glucose and lipids in skeletal muscle pertaining to both blood glucose and intramyocellular lipid homeostasis. It then concentrates upon emerging evidence, from calorimetric studies investigating the direct effect of leptin on thermogenesis in intact skeletal muscle, of yet another feature of the mutual interaction between glucose and lipid oxidation: that of substrate cycling between de novo lipogenesis and lipid oxidation. It is proposed that this energy-dissipating substrate cycling that links glucose and lipid metabolism to thermogenesis could function as a 'fine-tuning' mechanism that regulates intramyocellular lipid homeostasis, and hence contributes to the protection of skeletal muscle against lipotoxicity.

Journal ArticleDOI
TL;DR: Increased glucose and non-esterified fatty acids separately reproduced the two major beta-cell alterations observed in vivo, i.e. loss of glucose-stimulated insulin secretion and reduction in islet insulin content, and suggest that this deleterious effect was, at least in part, mediated by modifications in lipid metabolism gene expression.
Abstract: Aims/hypothesis Whether excess glucose (glucotoxicity) and excess non-esterified fatty acids (lipotoxicity) act synergistically or separately to alter beta-cell function on Type 2 diabetes remains controversial. We examined the influence of non-esterified fatty acids, with or without concomitant increased glucose concentrations, on human islet function and on the expression of genes involved in lipid metabolism.

Journal ArticleDOI
TL;DR: Evidence is presented for a role for 1) leptin resistance in contributing to the excessive accumulation of tissue lipid in obesity, 2) PI 3-kinase in mediating the acute lipid-lowering effects of leptin in liver, and 3) defective leptin activation of PI 3 -kinase as a novel mechanism of leptin resistance.

Journal ArticleDOI
TL;DR: Whether DGAT plays a mediating or preventive role in the development of ectopic lipotoxicity in tissues such as muscle and the pancreas, when their supply of free fatty acids (FFAs) exceeds their needs, is less clear.
Abstract: Acyl-CoA:diacylglycerol acyltransferase (DGAT, EC2.3.1.20), a key enzyme in triglyceride (TG) biosynthesis, not only participates in lipid metabolism but also influences metabolic pathways of other fuel molecules. Changes in the expression and/or activity levels of DGAT may lead to changes in systemic insulin sensitivity and energy homeostasis. The synthetic role of DGAT in adipose tissue, the liver, and the intestine, sites where endogenous levels of DGAT activity and TG synthesis are high, is relatively clear. Less clear is whether DGAT plays a mediating or preventive role in the development of ectopic lipotoxicity in tissues such as muscle and the pancreas, when their supply of free fatty acids (FFAs) exceeds their needs. Future studies with tissue-specific overexpression and/or knockout in these animal models would be expected to shed additional light on these issues.

Journal ArticleDOI
TL;DR: Understanding their activation and expression in both obese and ETr humans should assist in understanding how and why IMTGs become lipotoxic.
Abstract: The potential lipotoxic effect of intramyocellular triglyceride (IMTG) accumulation has been suggested to be a major component in the development of insulin resistance. Increased levels of IMTGs correlate with insulin resistance in both obese and diabetic patients, but this relationship does not exist in endurance trained (ETr) subjects. This may be, in part, related to differences in the gene expression and activities of key enzymes involved in fatty acid transport and oxidation as well as in the perodixation status of the IMTGs in obese/diabetic patients as compared with ETr subjects. Disruptions in fat and lipid homeostasis in skeletal muscle have been shown to activate protein kinase C (PKC), which acts on several downstream signalling pathways, including the insulin and the IκB kinase (IKK)/NFκB signalling pathways. Additionally, an increased peroxidation of IMTGs may reduce insulin sensitivity by increasing TNFα, which is known to increase the expression of suppressor of cytokine signalling proteins (SOCS). A common characteristic observed when activating both PKC and TNFα/SOCS3 is the inhibition of tyrosine phosphorylation of IRS-1 and subsequently an inhibition of its activation of downstream signalling molecules. These may be important players in the development of insulin resistance and understanding their activation and expression in both obese and ETr humans should assist in understanding how and why IMTGs become lipotoxic.

Journal ArticleDOI
TL;DR: Results suggest that the insulin resistance in the MKR mice is associated with increased muscle triglycerides levels and that whole-body insulin resistance can be, at least partially, reversed in association with a reduction in muscle triglyceride levels, although the mechanisms are yet to be determined.
Abstract: Insulin resistance is one of the primary characteristics of type 2 diabetes. Mice overexpressing a dominant-negative IGF-I receptor specifically in muscle (MKR mice) demonstrate severe insulin resistance with high levels of serum and tissue lipids and eventually develop type 2 diabetes at 5–6 wk of age. To determine whether lipotoxicity plays a role in the progression of the disease, we crossed MKR mice with mice overexpressing a fatty acid translocase, CD36, in skeletal muscle. The double-transgenic MKR/CD36 mice showed normalization of the hyperglycemia and the hyperinsulinemia as well as a marked improvement in liver insulin sensitivity. The MKR/CD36 mice also exhibited normal rates of fatty acid oxidation in skeletal muscle when compared with the decreased rate of fatty acid oxidation in MKR. With the reduction in insulin resistance, β-cell function returned to normal. These and other results suggest that the insulin resistance in the MKR mice is associated with increased muscle triglycerides levels a...

Journal ArticleDOI
01 Nov 2004-Diabetes
TL;DR: In adult rats, concomitant with increased HOMA index, skeletal muscle mitochondria display higher respiratory capacity and energy efficiency and a deleterious consequence of increased mitochondrial efficiency would be a reduced utilization of energy substrates, especially fatty acids, leading to intracellular triglyceride accumulation and lipotoxicity, thus contributing to the onset of skeletal muscle insulin resistance.
Abstract: The transition from young to adult age is associated with decreased insulin sensitivity. To investigate whether changes in skeletal muscle mitochondrial function could be involved in the development of insulin resistance, we measured the oxidative capacity and energetic efficiency of subsarcolemmal and intermyofibrillar mitochondria isolated from the skeletal muscle of 60- and 180-day-old rats. Mitochondrial efficiency was tested by measuring the degree of thermodynamic coupling and optimal thermodynamic efficiency, as well as mitochondrial proton leak, which was determined in both the absence (basal) and the presence (fatty acid induced) of palmitate. Serum glucose, insulin, and HOMA index were also measured. The results show that in adult rats, concomitant with increased HOMA index, skeletal muscle mitochondria display higher respiratory capacity and energy efficiency. In fact, thermodynamic coupling and optimal thermodynamic efficiency significantly increased and fatty acid-induced proton leak was significantly lower in the skeletal muscle mitochondria from adult than in younger rats. A deleterious consequence of increased mitochondrial efficiency would be a reduced utilization of energy substrates, especially fatty acids, leading to intracellular triglyceride accumulation and lipotoxicity, thus contributing to the onset of skeletal muscle insulin resistance.

Journal ArticleDOI
TL;DR: Results suggest that UCP-H mice have a mitochondrial myopathy due to depleted energy stores sufficient to compromise growth and impair muscle function, and suggests that excess intramyocellular lipid and mitochondrial dysfunction are not sufficient to cause insulin resistance in mice.
Abstract: To address the potential role of lipotoxicity and mitochondrial function in insulin resistance, we studied mice with high-level expression of uncoupling protein-1 in skeletal muscle (UCP-H mice). Body weight, body length, and bone mineral density were decreased in UCP-H mice compared with wild-type littermates. Forelimb grip strength and muscle mass were strikingly decreased, whereas muscle triglyceride content was increased fivefold in UCP-H mice. Electron microscopy demonstrated lipid accumulation and large mitochondria with abnormal architecture in UCP-H skeletal muscle. ATP content and key mitochondrial proteins were decreased in UCP-H muscle. Despite mitochondrial dysfunction and increased intramyocellular fat, fasting serum glucose was 22% lower and insulin-stimulated glucose transport 80% higher in UCP-H animals. These beneficial effects on glucose metabolism were associated with increased AMP kinase and hexokinase activities, as well as elevated levels of GLUT4 and myocyte enhancer factor-2 proteins A and D in skeletal muscle. These results suggest that UCP-H mice have a mitochondrial myopathy due to depleted energy stores sufficient to compromise growth and impair muscle function. Enhanced skeletal muscle glucose transport in this setting suggests that excess intramyocellular lipid and mitochondrial dysfunction are not sufficient to cause insulin resistance in mice.

Journal ArticleDOI
TL;DR: Of greater clinical significance was the observation that "heart-friendly" vegetable oils such as SO, rich in omega-6 polyunsaturated fatty acids, could precipitate cardiac necrosis, and questions its beneficial role in the cardiovascular system, especially following diabetes.