scispace - formally typeset
Search or ask a question

Showing papers on "Phase transition published in 2015"


Journal ArticleDOI
TL;DR: In this paper, a structural phase transition between the hexagonal and stable monoclinic (distorted octahedral or 1T′) phases in bulk single-crystalline MoTe2 was shown.
Abstract: Monoclinic transition metal dichalcogenides offer the possibility of topological quantum devices, but they are difficult to realize. One route may be through switching from the common hexagonal phase, for which a method is now shown. Layered transition metal dichalcogenides (TMDs) have attracted renewed interest owing to their potential use as two-dimensional components in next-generation devices1,2. Although group 6 TMDs, such as MX2 with M = (Mo, W) and X = (S, Se, Te), can exist in several polymorphs3, most studies have been conducted with the semiconducting hexagonal (2H) phase as other polymorphs often exhibit inhomogeneous formation1,4,5,6. Here, we report a reversible structural phase transition between the hexagonal and stable monoclinic (distorted octahedral or 1T′) phases in bulk single-crystalline MoTe2. Furthermore, an electronic phase transition from semimetallic to semiconducting is shown as 1T′-MoTe2 crystals go from bulk to few-layered. Bulk 1T′-MoTe2 crystals exhibit a maximum carrier mobility of 4,000 cm2 V−1 s−1 and a giant magnetoresistance of 16,000% in a magnetic field of 14 T at 1.8 K. In the few-layered form, 1T′-MoTe2 exhibits a bandgap opening of up to 60 meV, which our density functional theory calculations identify as arising from strong interband spin–orbit coupling. We further clarify that the Peierls distortion is a key mechanism to stabilize the monoclinic structure. This class of semiconducting MoTe2 unlocks the possibility of topological quantum devices based on non-trivial Z2-band-topology quantum spin Hall insulators in monoclinic TMDs (ref. 7).

790 citations


Journal ArticleDOI
TL;DR: In this paper, the authors examined the crystallographic and magnetic properties of single crystals of CrI3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K.
Abstract: We have examined the crystallographic and magnetic properties of single crystals of CrI3, an easily cleavable, layered and insulating ferromagnet with a Curie temperature of 61 K. Our X-ray diffraction studies reveal a first-order crystallographic phase transition occurring near 210–220 K upon warming, with significant thermal hysteresis. The low-temperature structure is rhombohedral (R3, BiI3-type) and the high-temperature structure is monoclinic (C2/m, AlCl3-type). We find evidence for coupling between the crystallographic and magnetic degrees of freedom in CrI3, observing an anomaly in the interlayer spacing at the Curie temperature and an anomaly in the magnetic susceptibility at the structural transition. First-principles calculations reveal the importance of proper treatment of the long-ranged interlayer forces, and van der Waals density functional theory does an excellent job of predicting the crystal structures and their relative stability. Calculations also suggest that the ferromagnetic order f...

781 citations


Journal ArticleDOI
TL;DR: In this article, the photoluminescence, transmittance, charge-carrier recombination dynamics, mobility, and diffusion length of CH3NH3PbI3 were investigated in the temperature range from 8 to 370 K.
Abstract: The photoluminescence, transmittance, charge-carrier recombination dynamics, mobility, and diffusion length of CH3NH3PbI3 are investigated in the temperature range from 8 to 370 K. Profound changes in the optoelectronic properties of this prototypical photovoltaic material are observed across the two structural phase transitions occurring at 160 and 310 K. Drude-like terahertz photoconductivity spectra at all temperatures above 80 K suggest that charge localization effects are absent in this range. The monomolecular charge-carrier recombination rate generally increases with rising temperature, indicating a mechanism dominated by ionized impurity mediated recombination. Deduced activation energies Ea associated with ionization are found to increase markedly from the room-temperature tetragonal (Ea ≈ 20 meV) to the higher-temperature cubic (Ea ≈ 200 meV) phase adopted above 310 K. Conversely, the bimolecular rate constant decreases with rising temperature as charge-carrier mobility declines, while the Auger rate constant is highly phase specific, suggesting a strong dependence on electronic band structure. The charge-carrier diffusion length gradually decreases with rising temperature from about 3 μm at -93 °C to 1.2 μm at 67 °C but remains well above the optical absorption depth in the visible spectrum. These results demonstrate that there are no fundamental obstacles to the operation of cells based on CH3NH3PbI3 under typical field conditions. The photoconductivity in CH3NH3PbI3 thin films is investigated from 8 to 370 K across three structural phases. Analysis of the charge-carrier recombination dynamics reveals a variety of starkly differing recombination mechanisms. Evidence of charge-carrier localization is observed only at low temperature. High charge mobility and diffusion length are maintained at high temperature beyond the tetragonal-to-cubic phase transition at ≈310 K.

778 citations


Journal ArticleDOI
TL;DR: An ionic field-effect transistor (termed an iFET), in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2, opens up possibilities in searching for novel states of matter in the extreme charge-carrier-concentration limit.
Abstract: The ability to tune material properties using gating by electric fields is at the heart of modern electronic technology. It is also a driving force behind recent advances in two-dimensional systems, such as the observation of gate electric-field-induced superconductivity and metal-insulator transitions. Here, we describe an ionic field-effect transistor (termed an iFET), in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2. The strong charge doping induced by the tunable ion intercalation alters the energetics of various charge-ordered states in 1T-TaS2 and produces a series of phase transitions in thin-flake samples with reduced dimensionality. We find that the charge-density wave states in 1T-TaS2 collapse in the two-dimensional limit at critical thicknesses. Meanwhile, at low temperatures, the ionic gating induces multiple phase transitions from Mott-insulator to metal in 1T-TaS2 thin flakes, with five orders of magnitude modulation in resistance, and superconductivity emerges in a textured charge-density wave state induced by ionic gating. Our method of gate-controlled intercalation opens up possibilities in searching for novel states of matter in the extreme charge-carrier-concentration limit.

564 citations


Journal ArticleDOI
TL;DR: NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on, in which NTE is determined by either ferroelectric order or magnetic one.
Abstract: Negative thermal expansion (NTE) is an intriguing physical property of solids, which is a consequence of a complex interplay among the lattice, phonons, and electrons. Interestingly, a large number of NTE materials have been found in various types of functional materials. In the last two decades good progress has been achieved to discover new phenomena and mechanisms of NTE. In the present review article, NTE is reviewed in functional materials of ferroelectrics, magnetics, multiferroics, superconductors, temperature-induced electron configuration change and so on. Zero thermal expansion (ZTE) of functional materials is emphasized due to the importance for practical applications. The NTE functional materials present a general physical picture to reveal a strong coupling role between physical properties and NTE. There is a general nature of NTE for both ferroelectrics and magnetics, in which NTE is determined by either ferroelectric order or magnetic one. In NTE functional materials, a multi-way to control thermal expansion can be established through the coupling roles of ferroelectricity-NTE, magnetism-NTE, change of electron configuration-NTE, open-framework-NTE, and so on. Chemical modification has been proved to be an effective method to control thermal expansion. Finally, challenges and questions are discussed for the development of NTE materials. There remains a challenge to discover a “perfect” NTE material for each specific application for chemists. The future studies on NTE functional materials will definitely promote the development of NTE materials.

492 citations


Journal ArticleDOI
TL;DR: A switchable perfect absorber with multispectral thermal imaging capability and utilizing the amorphous-to-crystalline phase transition in GST offers switchable absorption with strong reflectance contrast at resonance and large phase-change-induced spectral shifts.
Abstract: A switchable perfect absorber with multispectral thermal imaging capability is presented. Aluminum nanoantenna arrays above a germanium antimony telluride (GST) spacer layer and aluminum mirror provide efficient wavelength-tunable absorption in the mid-infrared. Utilizing the amorphous-to-crystalline phase transition in GST, this device offers switchable absorption with strong reflectance contrast at resonance and large phase-change-induced spectral shifts.

486 citations


Journal Article
TL;DR: In this paper, an ionic field effect transistor (termed an iFET) is described, in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2.
Abstract: The ability to tune material properties using gating by electric fields is at the heart of modern electronic technology. It is also a driving force behind recent advances in two-dimensional systems, such as the observation of gate electric-field-induced superconductivity and metal-insulator transitions. Here, we describe an ionic field-effect transistor (termed an iFET), in which gate-controlled Li ion intercalation modulates the material properties of layered crystals of 1T-TaS2. The strong charge doping induced by the tunable ion intercalation alters the energetics of various charge-ordered states in 1T-TaS2 and produces a series of phase transitions in thin-flake samples with reduced dimensionality. We find that the charge-density wave states in 1T-TaS2 collapse in the two-dimensional limit at critical thicknesses. Meanwhile, at low temperatures, the ionic gating induces multiple phase transitions from Mott-insulator to metal in 1T-TaS2 thin flakes, with five orders of magnitude modulation in resistance, and superconductivity emerges in a textured charge-density wave state induced by ionic gating. Our method of gate-controlled intercalation opens up possibilities in searching for novel states of matter in the extreme charge-carrier-concentration limit.

437 citations


Journal ArticleDOI
TL;DR: The ferroelectric properties and crystal structure of doped HfO2 thin films were investigated for different thicknesses, electrode materials, and annealing conditions in this paper.
Abstract: The ferroelectric properties and crystal structure of doped HfO2 thin films were investigated for different thicknesses, electrode materials, and annealing conditions Metal-ferroelectric-metal capacitors containing Gd:HfO2 showed no reduction of the polarization within the studied thickness range, in contrast to hafnia films with other dopants A qualitative model describing the influence of basic process parameters on the crystal structure of HfO2 was proposed The influence of different structural parameters on the field cycling behavior was examined This revealed the wake-up effect in doped HfO2 to be dominated by interface induced effects, rather than a field induced phase transition TaN electrodes were shown to considerably enhance the stabilization of the ferroelectric phase in HfO2 compared to TiN electrodes, yielding a Pr of up to 35 μC/cm2 This effect was attributed to the interface oxidation of the electrodes during annealing, resulting in a different density of oxygen vacancies in the Gd:Hf

404 citations


Journal ArticleDOI
TL;DR: In this article, a new theoretical model describes a phase transition from many-body localized states, in which quantum information is accessible, to thermal states in which such information is lost in the dynamics.
Abstract: The dynamical behavior of quantum systems is relevant to quantum information processing. A new theoretical model describes a phase transition from many-body localized states, in which quantum information is accessible, to thermal states, in which such information is lost in the dynamics.

315 citations


Journal ArticleDOI
27 Mar 2015-Science
TL;DR: The precise control of Rydberg many-body systems is demonstrated and a magnetization staircase is observed as a function of the system size and the emergence of crystalline states with vanishing susceptibility is shown.
Abstract: Dominating finite-range interactions in many-body systems can lead to intriguing self-ordered phases of matter. For quantum magnets, Ising models with power-law interactions are among the most elementary systems that support such phases. These models can be implemented by laser coupling ensembles of ultracold atoms to Rydberg states. Here, we report on the experimental preparation of crystalline ground states of such spin systems. We observe a magnetization staircase as a function of the system size and show directly the emergence of crystalline states with vanishing susceptibility. Our results demonstrate the precise control of Rydberg many-body systems and may enable future studies of phase transitions and quantum correlations in interacting quantum magnets.

305 citations


Journal ArticleDOI
TL;DR: A combination of operando X-ray diffraction, pair distribution function (PDF) analysis coupled with electrochemical measurements and Mossbauer spectroscopy elucidates the nature of the phase transitions induced by insertion and extraction of sodium ions in P2-Na0.5O2 as discussed by the authors.
Abstract: A combination of operando X-ray diffraction, pair distribution function (PDF) analysis coupled with electrochemical measurements and Mossbauer spectroscopy elucidates the nature of the phase transitions induced by insertion and extraction of sodium ions in P2-Na0.67[NiyMn0.5+yFe0.5−2y]O2 (y = 0, 0.10, 0.15). When phase transitions are avoided, the optimal cathode material – P2-Na0.67Fe0.2Mn0.65Ni0.15O2 – delivers 25% more energy than the unsubstituted material, sustaining high specific energy (350 Wh kg−1) at moderate rates and maintains 80% of the original energy density after 150 cycles – a significant improvement in performance vs. the unsubstituted analogue. The crystal structure of the high voltage phase is solved for the first time by X-ray PDF analysis of P2-Na0.67−zFe0.5Mn0.5O2 (where z ∼ 0.5), revealing that migration of the transition metals – particularly Fe3+ – into tetrahedral sites in the interlayer space occurs at high potential. This results in new short range order between two adjacent layers. Although the transition metal migration is reversible as proven by electrochemical performance, it induces a large disfavourable cell polarization. The deleterious high voltage transition is mitigated by substitution of Fe3+ by Mn4+/Ni2+, giving rise to better cycling performance. Moreover, as demonstrated by 57Fe Mossbauer spectroscopy, the much lower ratio of Fe4+O6 to Fe3+O6 observed systematically across the range of Ni content – compared to the values expected from a purely ionic model – suggests redox activity involves the O-2p orbitals owing to their overlap with the transition metal-3d orbitals.

Journal ArticleDOI
TL;DR: The phase transition of single layer molybdenum disulfide (MoS2) from semiconducting 2H to metallic 1T and then to 1T′ phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory as discussed by the authors.
Abstract: The phase transition of single layer molybdenum disulfide (MoS2) from semiconducting 2H to metallic 1T and then to 1T′ phases, and the effect of the phase transition on hydrogen evolution reaction (HER) are investigated within this work by density functional theory. Experimentally, 2H-MoS2 has been widely used as an excellent electrode for HER and can get charged easily. Here we find that the negative charge has a significant impact on the structural phase transition in a MoS2 monolayer. The thermodynamic stability of 1T-MoS2 increases with the negative charge state, comparing with the 2H-MoS2 structure before phase transition and the kinetic energy barrier for a phase transition from 2H to 1T decreases from 1.59 to 0.27 eV when 4e– are injected per MoS2 unit. Additionally, 1T phase is found to transform into the distorted structure (1T′ phase) spontaneously. On their activity toward hydrogen evolution reaction, 1T′-MoS2 structure shows comparable hydrogen evolution reaction activity to the 2H-MoS2 struct...

Journal ArticleDOI
TL;DR: In this article, phase composition and microstructure of the alloys were analyzed employing criteria for solid solution/intermetallic phase formation, and the effect of alloys' chemical composition on the volume fraction of constitutive phases was discussed.

Journal ArticleDOI
TL;DR: In this article, the authors present an ab initio framework to calculate anharmonic phonon frequency and phonon lifetime that is applicable to severely anharmonicity systems, including thermoelectric, ferroelectric, and superconducting materials.
Abstract: We present an ab initio framework to calculate anharmonic phonon frequency and phonon lifetime that is applicable to severely anharmonic systems. We employ self-consistent phonon (SCPH) theory with microscopic anharmonic force constants, which are extracted from density functional calculations using the least absolute shrinkage and selection operator technique. We apply the method to the high-temperature phase of ${\mathrm{SrTiO}}_{3}$ and obtain well-defined phonon quasiparticles that are free from imaginary frequencies. Here we show that the anharmonic phonon frequency of the antiferrodistortive mode depends significantly on the system size near the critical temperature of the cubic-to-tetragonal phase transition. By applying perturbation theory to the SCPH result, phonon lifetimes are calculated for cubic ${\mathrm{SrTiO}}_{3}$, which are then employed to predict lattice thermal conductivity using the Boltzmann transport equation within the relaxation-time approximation. The presented methodology is efficient and accurate, paving the way toward a reliable description of thermodynamic, dynamic, and transport properties of systems with severe anharmonicity, including thermoelectric, ferroelectric, and superconducting materials.

Journal ArticleDOI
TL;DR: It is shown that transitions between square and triangular lattices occur via a two-step diffusive nucleation pathway involving liquid nuclei, suggesting that an intermediate liquid should exist in the nucleation processes of solid-solid transitions of most metals and alloys.
Abstract: The microscopic kinetics of ubiquitous solid-solid phase transitions remain poorly understood. Here, by using single-particle-resolution video microscopy of colloidal films of diameter-tunable microspheres, we show that transitions between square and triangular lattices occur via a two-step diffusive nucleation pathway involving liquid nuclei. The nucleation pathway is favoured over the direct one-step nucleation because the energy of the solid/liquid interface is lower than that between solid phases. We also observed that nucleation precursors are particle-swapping loops rather than newly generated structural defects, and that coherent and incoherent facets of the evolving nuclei exhibit different energies and growth rates that can markedly alter the nucleation kinetics. Our findings suggest that an intermediate liquid should exist in the nucleation processes of solid-solid transitions of most metals and alloys, and provide guidance for better control of the kinetics of the transition and for future refinements of solid-solid transition theory.

Journal ArticleDOI
TL;DR: In well-controlled sweeps across the Hepp–Lieb–Dicke phase transition, hysteretic dynamics showing power-law scaling with respect to the transition time suggests an interpretation in terms of a Kibble–Zurek mechanism, and indicates the possibility of universal behavior in the presence of dissipation.
Abstract: The Dicke model with a weak dissipation channel is realized by coupling a Bose–Einstein condensate to an optical cavity with ultranarrow bandwidth. We explore the dynamical critical properties of the Hepp–Lieb–Dicke phase transition by performing quenches across the phase boundary. We observe hysteresis in the transition between a homogeneous phase and a self-organized collective phase with an enclosed loop area showing power-law scaling with respect to the quench time, which suggests an interpretation within a general framework introduced by Kibble and Zurek. The observed hysteretic dynamics is well reproduced by numerically solving the mean-field equation derived from a generalized Dicke Hamiltonian. Our work promotes the understanding of nonequilibrium physics in open many-body systems with infinite range interactions.

Journal ArticleDOI
TL;DR: In this paper, a review of spatially confined, non-equilibrium physics in nanoporous media is presented. And a particular emphasis is put on texture formation upon crystallisation in nanopore-confined condensed matter, a topic both of high fundamental interest and of increasing nanotechnological importance.
Abstract: Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

Journal ArticleDOI
Di Wu1, Xin Li1, Bo Xu1, Nancy Twu1, Lei Liu1, Gerbrand Ceder1 
TL;DR: In this article, a layered NaTiO2 anode material for Na-ion batteries was proposed, which is prepared from only earth-abundant elements, delivers 152 mA h g−1 of reversible capacity at C/10 rate, shows excellent cyclability with capacity retention over 98% after 60 cycles.
Abstract: We report on layered NaTiO2 as a potential anode material for Na-ion batteries. The material is prepared from only earth-abundant elements, delivers 152 mA h g−1 of reversible capacity at C/10 rate, shows excellent cyclability with capacity retention over 98% after 60 cycles, and high rate capability. Furthermore, in situ X-ray diffraction analysis reveals a reversible O3–O′3 phase transition, including an unusual lattice parameter variation coupled to complicated Na vacancy orderings in a series of 2nd order phase transitions.

Journal ArticleDOI
09 Jan 2015-Science
TL;DR: Using homodyne matter-wave interferometry to measure first-order correlation functions, the central quantitative prediction of the Kibble-Zurek theory is verified, namely the homogeneous-system power-law scaling of the coherence length with the quench rate.
Abstract: Kibble-Zurek theory models the dynamics of spontaneous symmetry breaking, which plays an important role in a wide variety of physical contexts, ranging from cosmology to superconductors. We explored these dynamics in a homogeneous system by thermally quenching an atomic gas with short-range interactions through the Bose-Einstein phase transition. Using homodyne matter-wave interferometry to measure first-order correlation functions, we verified the central quantitative prediction of the Kibble-Zurek theory, namely the homogeneous-system power-law scaling of the coherence length with the quench rate. Moreover, we directly confirmed its underlying hypothesis, the freezing of the correlation length near the transition. Our measurements agree with a beyond-mean-field theory and support the expectation that the dynamical critical exponent for this universality class is z = 3 / 2 .

Journal ArticleDOI
Qian Wang1, Yang Yu2, Jun Yang1, Jing Liu1, Jing Liu2 
TL;DR: A dual-trans method to print the first functional liquid-metal circuit layout on poly(vinyl chloride) film, and then transfer it into a poly(dimethylsiloxane) substrate through freeze phase transition processing for the fabrication of a flexible electronic device.
Abstract: A dual-trans method to print the first functional liquid-metal circuit layout on poly(vinyl chloride) film, and then transfer it into a poly(dimethylsiloxane) substrate through freeze phase transition processing for the fabrication of a flexible electronic device. A programmable soft electronic band and a temperature-sensing module wirelessly communicate with a mobile phone, demonstrating the efficiency and capability of the method.

Journal ArticleDOI
TL;DR: In this paper, a review of spatially confined, non-equilibrium physics in nanoporous media is presented. And a particular emphasis is put on texture formation upon crystallisation in nanopore-confined condensed matter, a topic both of high fundamental interest and of increasing nanotechnological importance.
Abstract: Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, carbon, gold, silica, and silicon having pore diameters ranging from a few up to 50 nanometers are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g., for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.

Journal ArticleDOI
TL;DR: In this article, a new approach to probing ergodicity and its breakdown in one-dimensional quantum many-body systems based on their response to a local perturbation is proposed, which is reminiscent of the Thouless conductance in single-particle localization.
Abstract: We propose a new approach to probing ergodicity and its breakdown in one-dimensional quantum many-body systems based on their response to a local perturbation. We study the distribution of matrix elements of a local operator between the system’s eigenstates, finding a qualitatively different behavior in the many-body localized (MBL) and ergodic phases. To characterize how strongly a local perturbation modifies the eigenstates, we introduce the parameter G(L)=⟨ln(Vnm/δ)⟩, which represents the disorder-averaged ratio of a typical matrix element of a local operator V to energy level spacing δ; this parameter is reminiscent of the Thouless conductance in the single-particle localization. We show that the parameter G(L) decreases with system size L in the MBL phase and grows in the ergodic phase. We surmise that the delocalization transition occurs when G(L) is independent of system size, G(L)=Gc∼1. We illustrate our approach by studying the many-body localization transition and resolving the many-body mobility edge in a disordered one-dimensional XXZ spin-1/2 chain using exact diagonalization and time-evolving block-decimation methods. Our criterion for the MBL transition gives insights into microscopic details of transition. Its direct physical consequences, in particular, logarithmically slow transport at the transition and extensive entanglement entropy of the eigenstates, are consistent with recent renormalization-group predictions.

Journal ArticleDOI
TL;DR: In this article, a lead-free relaxor ferroelectric ceramic of (0.67−x)BiFeO3-0.33BT-xBMN, x = 0−0.1] was prepared by a solid-state reaction method.
Abstract: A novel lead-free relaxor ferroelectric ceramic of (0.67−x)BiFeO3–0.33BaTiO3–xBa(Mg1/3Nb2/3)O3 [(0.67−x)BF–0.33BT–xBMN, x = 0–0.1] was prepared by a solid-state reaction method. A relatively high maximum polarization Pmax of 38 μC/cm2 and a low remanent polarization Pr of 5.7 μC/cm2 were attained under 12.5 kV/mm in the x = 0.06 sample, leading to an excellent energy-storage density of W ~1.56 J/cm3 and a moderate energy-storage efficiency of η ~75%. Moreover, a good temperature stability of the energy storage was obtained in the x = 0.06 sample from 25°C to 190°C. The achievement of these characteristics was basically attributed to an electric field induced reversible ergodic to ferroelectric phase transition owing to similar free energies near a critical freezing temperature. The results indicate that the (0.67−x)BF–0.33BT–xBMN lead-free realxor ferroelectric ceramic could be a promising dielectric material for energy-storage capacitors.

Journal ArticleDOI
TL;DR: The present result indicates that a 2D crystal with correlated electrons is a novel nano-system to explore and functionalize multiple metastable states that are inaccessible in its bulk form.
Abstract: Scaling down materials to an atomic-layer level produces rich physical and chemical properties as exemplified in various two-dimensional (2D) crystals including graphene, transition metal dichalcogenides, and black phosphorus. This is caused by the dramatic modification of electronic band structures. In such reduced dimensions, the electron correlation effects are also expected to be significantly changed from bulk systems. However, there are few attempts to realize novel phenomena in correlated 2D crystals. We report memristive phase switching in nano-thick crystals of 1T-type tantalum disulfide (1T-TaS2), a first-order phase transition system. The ordering kinetics of the phase transition were found to become extremely slow as the thickness is reduced, resulting in an emergence of metastable states. Furthermore, we realized unprecedented memristive switching to multistep nonvolatile states by applying an in-plane electric field. The reduction of thickness is essential to achieve such nonvolatile electrical switching behavior. The thinning-induced slow kinetics possibly make the various metastable states robust and consequently realize the nonvolatile memory operation. The present result indicates that a 2D crystal with correlated electrons is a novel nano-system to explore and functionalize multiple metastable states that are inaccessible in its bulk form.

Journal ArticleDOI
TL;DR: In this paper, the cosmological constant as a thermodynamic variable of STU black holes in 4-dimensions in the fixed charge ensemble is considered and the associated phase structure is conjectured to be dual to an RG-flow on the space of field theories.
Abstract: We study the extended thermodynamics, obtained by considering the cosmological constant as a thermodynamic variable, of STU black holes in 4-dimensions in the fixed charge ensemble. The associated phase structure is conjectured to be dual to an RG-flow on the space of field theories. We find that for some charge configurations the phase structure resembles that of a Van der Waals gas: the system exhibits a family of first order phase transitions ending in a second order phase transition at a critical temperature. We calculate the holographic entanglement entropy for several charge configurations and show that for the cases where the gravity background exhibits Van der Waals behavior, the entanglement entropy presents a transition at the same critical temperature. To further characterize the phase transition we calculate appropriate critical exponents and show that they coincide. Thus, the entanglement entropy successfully captures the information of the extended phase structure. Finally, we discuss the physical interpretation of the extended space in terms of the boundary QFT and construct various holographic heat engines dual to STU black holes.

Journal ArticleDOI
TL;DR: Both PL and XRD results unambiguously prove the coexistence of the tetragonal and orthorhombic phases of MAPbI3 in the temperature range of 150 to 130 K.
Abstract: Solution-processed hybrid perovskite of CH3NH3PbI3 (MAPbI3) exhibits an abnormal luminescence behavior at around the tetragonal–orthorhombic phase transition temperature. The combination of time resolved photoluminescence (PL), variable excitation power PL, and variable-temperature X-ray diffraction (XRD) allows us to clearly interpret the abnormal luminescence features in the phase transition region of MAPbI3. Both PL and XRD results unambiguously prove the coexistence of the tetragonal and orthorhombic phases of MAPbI3 in the temperature range of 150 to 130 K. The two luminescence features observed in the orthorhombic phase at T < 130 K originate from free excitons and donor–acceptor-pair (DAP) transitions, respectively. The comprehensive understanding of optical properties upon phase transition in MAPbI3 will benefit the development of new optoelectronic devices.

Journal ArticleDOI
TL;DR: With proper modifications, this work is confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.
Abstract: Solid electrolytes with sufficiently high conductivities and stabilities are the elusive answer to the inherent shortcomings of organic liquid electrolytes prevalent in today's rechargeable batteries. We recently revealed a novel fast-ion-conducting sodium salt, Na2B12H12, which contains large, icosahedral, divalent B12H122− anions that enable impressive superionic conductivity, albeit only above its 529 K phase transition. Its lithium congener, Li2B12H12, possesses an even more technologically prohibitive transition temperature above 600 K. Here we show that the chemically related LiCB11H12 and NaCB11H12 salts, which contain icosahedral, monovalent CB11H12− anions, both exhibit much lower transition temperatures near 400 K and 380 K, respectively, and truly stellar ionic conductivities (>0.1 S cm−1) unmatched by any other known polycrystalline materials at these temperatures. With proper modifications, we are confident that room-temperature-stabilized superionic salts incorporating such large polyhedral anion building blocks are attainable, thus enhancing their future prospects as practical electrolyte materials in next-generation, all-solid-state batteries.

Journal ArticleDOI
TL;DR: In this paper, a new microscopic hadron-quark hybrid equation of state model for astrophysical applications is presented, from which compact hybrid star configurations are constructed, which are compo sed of a quark core and a hadronic shell with first-order phase transition at their interface.
Abstract: Aims. We present a new microscopic hadron-quark hybrid equation of state model for astrophysical applications, from which compact hybrid star configurations are constructed. These are compo sed of a quark core and a hadronic shell with first-order phase transition at their interface. The resulting mass-radius relations ar e in accordance with the latest astrophysical constraints. Methods. The quark matter description is based on a QCD motivated chiral approach with higher-order quark interactions in the Dirac scalar and vector coupling channels. For hadronic matter we select a relativistic mean-field equation of state with dens ity-dependent couplings. Since the nucleons are treated in the quasi-part icle framework, an excluded volume correction has been included for the nuclear equation of state at suprasaturation density which takes into account the finite size of the nucleons. Results. These novel aspects, excluded volume in the hadronic phase and the higher-order repulsive interactions in the quark phase, lead to a strong first-order phase transition with large late nt heat, i.e. the energy-density jump at the phase transitio n, which fulfills a criterion for a disconnected third-family branch of compact stars in the mass-radius relationship. These twin stars appear at high masses (∼ 2 M⊙) being relevant for current observations of high-mass pulsars. Conclusions. This analysis offers a unique possibility by radius observations of compact stars to probe the QCD phase diagram at zero temperature and large chemical potential and even to support the existence of a critical point in the QCD phase diagram.

Journal ArticleDOI
TL;DR: The experimental knowledge of the thermal expansion coefficients and precise determination of the cell parameters can potentially also be valuable while conducting density functional theory simulations on these systems in order to deliver more accurate band structure calculations.
Abstract: Lead halogen perovskites, and particularly methylammonium lead iodine, CH3NH3PbI3, have recently attracted considerable interest as alternative solar cell materials, and record solar cell efficiencies have now surpassed 20%. Concerns have, however, been raised about the thermal stability of methylammonium lead iodine, and a phase transformation from a tetragonal to a cubic phase has been reported at elevated temperature. Here, this phase transition has been investigated in detail using temperature-dependent X-ray diffraction measurements. The phase transformation is pinpointed to 54 °C, which is well within the normal operating range of a typical solar cell. The cell parameters were extracted as a function of the temperature, from which the thermal expansion coefficient was calculated. The latter was found to be rather high (αv = 1.57 × 10–4 K–1) for both the tetragonal and cubic phases. This is 6 times higher than the thermal expansion coefficient for soda lime glass and CIGS and 11 times larger than tha...

Journal ArticleDOI
Qingyuan Hu1, Li Jin1, Tong Wang1, Chunchun Li1, Zhuo Xing1, Xiaoyong Wei1 
TL;DR: In this article, the temperature dependence of permittivity in 0.88BaTiO 3 −0.12BMT (0.88BT-0. 12BMT) ceramics was investigated and the maximum energy storage density of 1.81 J/cm 2 was obtained at room temperature.