scispace - formally typeset
Search or ask a question

Showing papers on "Phosphatidylethanolamine published in 2012"


Journal ArticleDOI
TL;DR: It is shown by purification and reconstitution that the molecule responsible for the nuclease-resistant cofactor activity in brain is endogenous phosphatidylethanolamine (PE), suggesting that unlike RNA, PE is a promiscuous cofactor for PrPSc formation in vitro.
Abstract: Infectious prions containing the pathogenic conformer of the mammalian prion protein (PrPSc) can be produced de novo from a mixture of the normal conformer (PrPC) with RNA and lipid molecules. Recent reconstitution studies indicate that nucleic acids are not required for the propagation of mouse prions in vitro, suggesting the existence of an alternative prion propagation cofactor in brain tissue. However, the identity and functional properties of this unique cofactor are unknown. Here, we show by purification and reconstitution that the molecule responsible for the nuclease-resistant cofactor activity in brain is endogenous phosphatidylethanolamine (PE). Synthetic PE alone facilitates conversion of purified recombinant (rec)PrP substrate into infectious recPrPSc molecules. Other phospholipids, including phosphatidylcholine, phosphatidylserine, phosphatidylinositol, and phosphatidylglycerol, were unable to facilitate recPrPSc formation in the absence of RNA. PE facilitated the propagation of PrPSc molecules derived from all four different animal species tested including mouse, suggesting that unlike RNA, PE is a promiscuous cofactor for PrPSc formation in vitro. Phospholipase treatment abolished the ability of brain homogenate to reconstitute the propagation of both mouse and hamster PrPSc molecules. Our results identify a single endogenous cofactor able to facilitate the formation of prions from multiple species in the absence of nucleic acids or other polyanions.

208 citations


Journal ArticleDOI
22 Mar 2012-Blood
TL;DR: It is shown that a CD300a-Ig fusion protein specifically binds to apoptotic cells that are evolutionary apart, such as human and insect cells, suggesting that the ligand has to be conserved.

147 citations


Journal ArticleDOI
TL;DR: Modeling of residues involved in substrate selection suggests a novel P-type ATPase transport pathway at the protein/lipid interface and a potential solution to the giant substrate problem.
Abstract: Type IV P-type ATPases (P4-ATPases) catalyze translocation of phospholipid across a membrane to establish an asymmetric bilayer structure with phosphatidylserine (PS) and phosphatidylethanolamine (PE) restricted to the cytosolic leaflet. The mechanism for how P4-ATPases recognize and flip phospholipid is unknown, and is described as the “giant substrate problem” because the canonical substrate binding pockets of homologous cation pumps are too small to accommodate a bulky phospholipid. Here, we identify residues that confer differences in substrate specificity between Drs2 and Dnf1, Saccharomyces cerevisiae P4-ATPases that preferentially flip PS and phosphatidylcholine (PC), respectively. Transplanting transmembrane segments 3 and 4 (TM3-4) of Drs2 into Dnf1 alters the substrate preference of Dnf1 from PC to PS. Acquisition of the PS substrate maps to a Tyr618Phe substitution in TM4 of Dnf1, representing the loss of a single hydroxyl group. The reciprocal Phe511Tyr substitution in Drs2 specifically abrogates PS recognition by this flippase causing PS exposure on the outer leaflet of the plasma membrane without disrupting PE asymmetry. TM3 and the adjoining lumenal loop contribute residues important for Dnf1 PC preference, including Phe587. Modeling of residues involved in substrate selection suggests a novel P-type ATPase transport pathway at the protein/lipid interface and a potential solution to the giant substrate problem.

107 citations


Journal ArticleDOI
TL;DR: Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis and here it is found that a lipid flippase complex, composed of Lem3, Dnf1 or DNf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polity, in yeast.
Abstract: Lipid asymmetry at the plasma membrane is essential for such processes as cell polarity, cytokinesis and phagocytosis. Here we find that a lipid flippase complex, composed of Lem3, Dnf1 or Dnf2, has a role in the dynamic recycling of the Cdc42 GTPase, a key regulator of cell polarity, in yeast. By using quantitative microscopy methods, we show that the flippase complex is required for fast dissociation of Cdc42 from the polar cortex by the guanine nucleotide dissociation inhibitor. A loss of flippase activity, or pharmacological blockage of the inward flipping of phosphatidylethanolamine, a phospholipid with a neutral head group, disrupts Cdc42 polarity maintained by guanine nucleotide dissociation inhibitor-mediated recycling. Phosphatidylethanolamine flipping may reduce the charge interaction between a Cdc42 carboxy-terminal cationic region with the plasma membrane inner leaflet, enriched for the negatively charged lipid phosphatidylserine. Using a reconstituted system with supported lipid bilayers, we show that the relative composition of phosphatidylethanolamine versus phosphatidylserine directly modulates Cdc42 extraction from the membrane by guanine nucleotide dissociation inhibitor.

103 citations


Journal ArticleDOI
TL;DR: It is shown that lipids with the phosphatidylethanolamine headgroup strongly modulate the membrane disruption induced by IAPP, an amyloidogenic protein involved in type II diabetes, suggesting a possible role of PE and other amyloids involved in other pathologies.
Abstract: The toxicity of amyloid-forming peptides has been hypothesized to reside in the ability of protein oligomers to interact with and disrupt the cell membrane. Much of the evidence for this hypothesis comes from in vitro experiments using model membranes. However, the accuracy of this approach depends on the ability of the model membrane to accurately mimic the cell membrane. The effect of membrane composition has been overlooked in many studies of amyloid toxicity in model systems. By combining measurements of membrane binding, membrane permeabilization, and fiber formation, we show that lipids with the phosphatidylethanolamine (PE) headgroup strongly modulate the membrane disruption induced by IAPP (islet amyloid polypeptide protein), an amyloidogenic protein involved in type II diabetes. Our results suggest that PE lipids hamper the interaction of prefibrillar IAPP with membranes but enhance the membrane disruption correlated with the growth of fibers on the membrane surface via a detergent-like mechanism. These findings provide insights into the mechanism of membrane disruption induced by IAPP, suggesting a possible role of PE and other amyloids involved in other pathologies.

95 citations


Journal ArticleDOI
TL;DR: The curvature properties of a membrane are a key factor in the interactions of amphiphilic helical peptides in general, whose re-alignment and immersion preferences may be inferred in a straightforward manner from the lipid-shape concept.

93 citations


Journal ArticleDOI
06 Sep 2012-Blood
TL;DR: It is shown that phospholipid oxidation by acutely activated immune cells is a controlled event, and a central role in regulating membrane biology and innate immune function during health and disease is proposed.

83 citations


Journal ArticleDOI
TL;DR: In this paper, T-87 suspension cells are used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis.
Abstract: Cell cultures allow rapid kinetic labeling experiments that can provide information on precursor-product relationships and intermediate pools. T-87 suspension cells are increasingly used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis. To facilitate application of T-87 cells for analysis of glycerolipid metabolism, including tests of gene functions, we determined composition and accumulation of lipids of light- and dark-grown cultures. Fatty acid synthesis in T-87 cells was 7- to 8-fold higher than in leaves. Similar to other plant tissues, phosphatidylcholine (PC) and phosphatidylethanolamine were major phospholipids, but galactolipid levels were 3- to 4-fold lower than Arabidopsis leaves. Triacylglycerol represented 10% of total acyl chains, a greater percentage than in most nonseed tissues. The initial steps in T-87 cell lipid assembly were evaluated by pulse labeling cultures with [14C]acetate and [14C]glycerol. [14C]acetate was very rapidly incorporated into PC, preferentially at sn-2 and without an apparent precursor-product relationship to diacylglycerol (DAG). By contrast, [14C]glycerol most rapidly labeled DAG. These results indicate that acyl editing of PC is the major pathway for initial incorporation of fatty acids into glycerolipids of cells derived from a 16:3 plant. A very short lag time (5.4 s) for [14C]acetate labeling of PC implied channeled incorporation of acyl chains without mixing with the bulk acyl-CoA pool. Subcellular fractionation of pea (Pisum sativum) leaf protoplasts indicated that 30% of lysophosphatidylcholine acyltransferase activity colocalized with chloroplasts. Together, these data support a model in which PC participates in trafficking of newly synthesized acyl chains from plastids to the endoplasmic reticulum.

81 citations


Journal ArticleDOI
01 Aug 2012-PLOS ONE
TL;DR: It is shown that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment, but combined lipid analysis by thin-layer chromatography, mass spectrometry and 31P nuclear magnetic resonance (NMR) spectroscopy revealed that Leishesmania promastsigotes lack any detectable amount of PS.
Abstract: The protozoan parasite Leishmania is an intracellular pathogen infecting and replicating inside vertebrate host macrophages. A recent model suggests that promastigote and amastigote forms of the parasite mimic mammalian apoptotic cells by exposing phosphatidylserine (PS) at the cell surface to trigger their phagocytic uptake into host macrophages. PS presentation at the cell surface is typically analyzed using fluorescence-labeled annexin V. Here we show that Leishmania promastigotes can be stained by fluorescence-labeled annexin V upon permeabilization or miltefosine treatment. However, combined lipid analysis by thin-layer chromatography, mass spectrometry and 31 P nuclear magnetic resonance (NMR) spectroscopy revealed that Leishmania promastigotes lack any detectable amount of PS. Instead, we identified several other phospholipid classes such phosphatidic acid, phosphatidylethanolamine; phosphatidylglycerol and phosphatidylinositol as candidate lipids enabling annexin V staining.

75 citations


Journal ArticleDOI
TL;DR: These findings indicate that the 24-carbon and 26-carbon monounsaturated VLCFAs of Arabidopsis result primarily from VLCFA desaturation, rather than by elongation of long chain monounSaturated fatty acids.
Abstract: The Arabidopsis (Arabidopsis thaliana) acyl-coenzyme A (CoA) desaturase-like (ADS) gene family contains nine genes encoding fatty acid desaturase-like proteins. The biological function of only one member of the family, fatty acid desaturase5 (AtADS3/FAD5, At3g15850), is known, and this gene encodes the plastidic palmitoyl-monogalactosyldiacylglycerol Δ7 desaturase. We cloned seven members of the gene family that are predicted not to have a chloroplast transit peptide and expressed them in the yeast Saccharomyces cerevisiae. All seven have previously undescribed desaturase activity on very-long-chain fatty acid (VLCFA) substrates and exhibit diverse regiospecificity, catalyzing introduction of double bonds relative to the methyl end of the molecule (n-x) at n-6 (AtADS4, At1g06350), n-7 (AtADS1.3, At1g06100 and AtADS4.2, At1g06360), n-9 (AtADS1, At1g06080 and AtADS2, At2g31360) or Δ9 (relative to the carboxyl end of the molecule) positions (AtADS1.2, At1g06090 and AtADS1.4, At1g06120). Through forward and reverse genetics it was shown that AtADS2 is involved in the synthesis of the 24:1(n-9) and 26:1(n-9) components (X:Y, where X is chain length and Y is number of double bonds) of seed lipids, sphingolipids, and the membrane phospholipids phosphatidylserine, and phosphatidylethanolamine. Plants deficient in AtADS2 expression showed no obvious phenotype when grown under normal growing conditions, but showed an almost complete loss of phosphatidylethanolamine(42:4), phosphatidylserine(42:4), dihydroxy-monohexosylceramide(42:2)-2, trihydroxy-monohexosylceramide(42:2)-3, and trihydroxy-glycosylinositolphosphoceramide(42:2)-3, lipid species that contain the VLCFA 24:1(n-9), and trihydroxy-glycosylinositolphosphoceramide(44:2)-3, a lipid containing 26:1(n-9). Acyl-CoA profiling of these plants revealed a major reduction in 24:1-CoA and a small reduction in 26:1-CoA. Overexpression of AtADS2 resulted in a substantial increase in the percentage of glycerolipid and sphingolipids species containing 24:1 and a dramatic increase in the percentage of very-long-chain monounsaturated fatty acids in the acyl-CoA pool. Plants deficient in AtADS1 expression had reduced levels of 26:1(n-9) in seed lipids, but no significant changes in leaf phospholipids or sphingolipids were observed. These findings indicate that the 24-carbon and 26-carbon monounsaturated VLCFAs of Arabidopsis result primarily from VLCFA desaturation, rather than by elongation of long chain monounsaturated fatty acids.

60 citations


Journal ArticleDOI
TL;DR: A thermodynamically based model is proposed for how lipid-protein interactions can result in a mixed topological organization and how changes in lipid composition canresult in changes in the ratio of topologically distinct conformers of proteins.

Journal ArticleDOI
TL;DR: It is concluded that the induction of LPAAT3 during germ cell development critically contributes to the accumulation of PUFAs in testicular phospholipids, thereby possibly affecting sperm cell production.
Abstract: Long-chain polyunsaturated fatty acids (PUFAs) accumulate in mammalian testis during puberty and are essential for fertility. To investigate whether lysophospholipid acyltransferases determine the PUFA composition of testicular phospholipids during pubertal development, we compared their mRNA expression, in vitro activity, and specificity with the lipidomic profile of major phospholipids. The accumulation of PUFAs in phosphatidylcholine, phosphatidylethanolamine, and phosphatidylserine correlated with an induced lysophosphatidic acid acyltransferase (LPAAT)3 mRNA expression, increased microsomal LPAAT3 activity, and shift of LPAAT specificity to PUFA-coenzyme A. LPAAT3 was induced during germ cell maturation, as shown by immunofluorescence microscopy. Accordingly, differentiation of mouse GC-2spd(ts) spermatocytes into spermatides up-regulated LPAAT3 mRNA, increased the amount of polyunsaturated phospholipids, and shifted the specificity for the incorporation of deuterium-labeled docosahexaenoic acid toward phosphatidylcholine and phosphatidylethanolamine. Stable knockdown of LPAAT3 in GC-2spd(ts) cells significantly decreased microsomal LPAAT3 activity, reduced levels of polyunsaturated phosphatidylethanolamine species, and impaired cell proliferation/survival during geneticin selection. We conclude that the induction of LPAAT3 during germ cell development critically contributes to the accumulation of PUFAs in testicular phospholipids, thereby possibly affecting sperm cell production.

Journal ArticleDOI
TL;DR: The results show that fish viscera, which are traditionally discarded as fisheries wastes, are nutritional in phospholipids with total contents of the four detected phosphate classes ranging from 1.52 to 3.29 mg/g in the three tested fish species.
Abstract: An efficient shotgun lipidomics strategy was established and optimized for fast phospholipid profiling of viscera from three fish species: Lateolabrax japonicas, Ctenopharyngodon idellus, and Carassius auratus. This strategy relies on direct infusion of total lipid extracts into a tandem mass spectrometer without additional separation of the individual molecular species. Four classes of phospholipids, including phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), and phosphatidylserine (PS), were analyzed, and at least 81 molecular species of phospholipids were identified, including 34 species of PC, 24 species of PE, 12 species of PS, and 11 species of PI, in both positive- and negative-ion electrospray ionization mode. The results show that fish viscera, which are traditionally discarded as fisheries wastes, are nutritional in phospholipids with total contents of the four detected phospholipid classes ranging from 1.52 to 3.29 mg/g in the three tested fish species. Regardl...

Journal ArticleDOI
TL;DR: This study conducted MALDI imaging MS on rat brains damaged by ischemic injury and detected various phospholipids that showed unique distributions between normal and damaged areas of the brain and successfully identified several distinctly located phospholIPids in isChemic brain tissue.

Journal ArticleDOI
TL;DR: Fluorescent PS is used as a substrate in an in vitro assay for Psd1p-dependent PE production in isolated mitochondria and it is shown that PS is transferred from the mitochondrial outer membrane to the inner membrane independently of Psd 1p, Ups1p, and Ups2p and decarboxylated to PE by PSD1p in the inner membranes.

Journal ArticleDOI
TL;DR: It is concluded that lateral phase separation and destabilization of membrane lamellar structure without compromising membrane integrity are on the basis of the lipid-driven and receptor-independent mechanism of cell entry of S4(13)-PV peptide.

Journal ArticleDOI
TL;DR: The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions were rescued by ethanolamine application to atsDC-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development.
Abstract: Ethanolamine is important for synthesis of choline, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) in plants. The latter two phospholipids are the major phospholipids in eukaryotic membranes. In plants, ethanolamine is mainly synthesized directly from serine by serine decarboxylase. Serine decarboxylase is unique to plants and was previously shown to have highly specific activity to L-serine. While serine decarboxylase was biochemically characterized, its functions and importance in plants were not biologically elucidated due to the lack of serine decarboxylase mutants. Here we characterized an Arabidopsis mutant defective in serine decarboxylase, named atsdc-1 (Arabidopsis thaliana serine decarboxylase-1). The atsdc-1 mutants showed necrotic lesions in leaves, multiple inflorescences, sterility in flower, and early flowering in short day conditions. These defects were rescued by ethanolamine application to atsdc-1, suggesting the roles of ethanolamine as well as serine decarboxylase in plant development. In addition, molecular analysis of serine decarboxylase suggests that Arabidopsis serine decarboxylase is cytosol-localized and expressed in all tissue.

Journal ArticleDOI
TL;DR: The results suggest that modulation of the membrane‐soluble domains could be a valuable alternative to reduce excessive Aβ generation.
Abstract: Several studies suggest that the generation of Aβ is highly dependent on the levels of cholesterol within membranes' detergent-resistant microdomains (DRM). Indeed, the β-amyloid precursor protein (APP) cleaving machinery, namely β- and γ-secretases, has been shown to be present in DRM and its activity depends on membrane cholesterol levels. Counterintuitive to the localization of the cleavage machinery, the substrate, APP, localizes to membranes' detergent-soluble microdomains enriched in phospholipids (PL), indicating that Aβ generation is highly dependent on the capacity of enzyme and substrate to diffuse along the lateral plane of the membrane and therefore on the internal equilibrium of the different lipids of DRM and non-DRM domains. Here, we studied to which extent changes in the content of a main non-DRM lipid might affect the proteolytic processing of APP. As phosphatidylethanolamine (PE) accounts for the majority of PL, we focused on its impact on the regulation of APP proteolysis. In mammalian cells, siRNA-mediated knock-down of PE synthesis resulted in decreased Aβ owing to a dual effect: promoted α-secretase cleavage and decreased γ-secretase processing of APP. In vivo, in Drosophila melanogaster, genetic reduction in PL synthesis results in decreased γ-secretase-dependent cleavage of APP. These results suggest that modulation of the membrane-soluble domains could be a valuable alternative to reduce excessive Aβ generation.

Journal ArticleDOI
TL;DR: Increased phospholipid remodeling by LPCAT3 may be associated with adipocyte differentiation, and a change in their profiles between preadipocytes and adipocytes, including an increase in the percentage of arachidonic acid-containingospholipids is consistent with the activities of L PCAT3.
Abstract: Cellular membranes contain glycerophospholipids, which have important structural and functional roles in cells. Glycerophospholipids are first formed in the de novo pathway (Kennedy pathway) and are matured in the remodeling pathway (Lands’ cycle). Recently, lysophospholipid acyltransferases functioning in Lands’ cycle were identified and characterized. Several enzymes involved in glycerophospholipid biosynthesis have been reported to have important roles in adipocytes. However, the role of Lands’ cycle in adipogenesis has not yet been reported. Using C3H10T1/2, a cell line capable of differentiating to adipocyte-like cells in vitro, changes of lysophospholipid acyltransferase activities were investigated. Lysophosphatidylcholine acyltransferase (LPCAT), lysophosphatidylethanolamine acyltransferase (LPEAT) and lysophosphatidylserine acyltransferase (LPSAT) activities were enhanced, especially with 18:2-CoA and 20:4-CoA as donors. Correspondingly, mRNA expression of LPCAT3, which possesses LPCAT, LPEAT and LPSAT activities with high specificity for 18:2- and 20:4-CoA, was upregulated during adipogenesis. Analysis of acyl-chain compositions of phosphatidylcholine (PC), phosphatidylethanolamine (PE) and phosphatidylserine (PS) showed a change in their profiles between preadipocytes and adipocytes, including an increase in the percentage of arachidonic acid-containing phospholipids. These changes are consistent with the activities of LPCAT3. Therefore, it is possible that enhanced phospholipid remodeling by LPCAT3 may be associated with adipocyte differentiation.

Journal ArticleDOI
TL;DR: These changes in erythrocyte phospholipids may reflect changes induced by oxidative stress, indicating the presence of high oxidative stress in the peripheral blood of AD patients.
Abstract: Background: There are several reports indicating a decrease of ethanolamine plasmalogen (pl-PE) in brain tissues and in serum of patients with Alzheimer’s disease (AD). The present study aimed to examine the composition of erythrocyte phospholipids including pl-PE in patients with AD. Method: A high-performance liquid chromatography (HPLC) method that can separate intact plasmalogens and all other phospholipid classes by a single chromatographic run was used. Results: The ratios of pl-PE, phosphatidylethanolamine (PE) and phosphatidylserine (PS) to sphingomyelin were low as compared to those of the age-matched controls. Conclusion: These changes in erythrocyte phospholipids may reflect changes induced by oxidative stress, indicating the presence of high oxidative stress in the peripheral blood of AD patients.

Journal ArticleDOI
TL;DR: The results suggested that the capacity to maintain the proper functioning of some lipid biosynthetic activities and hence the stability of lipid composition may help the rice plant to withstand Al stress.
Abstract: The presence of aluminum (Al) in acidic soils is a major abiotic stress limiting the production of cultivated plants. Cell membranes are the main targets of environmental stresses and there is growing evidence for the involvement of membrane lipids in plant adaptation. The aim of this study was to evaluate the mid-long effects of Al on membrane lipid content and composition in the roots and shoots of rice plants grown under hydroponic conditions. Four rice cultivars were compared: two acknowledged as Al-resistant (Koshihikari) and Al-sensitive (Kasalath), respectively, and two Vietnamese cultivars, OM6073 and OM1490. Al treatment inhibited root and shoot growth in the sensitive cultivars and the observed changes in root and shoot lipid and fatty acid composition revealed patterns associated with Al sensitivity: larger decreases in lipid content and decreases in fatty acid unsaturation. In the roots, phospholipids, and particularly phosphatidylcholine (PC), decreased dramatically in the susceptible cultivars whereas the amount of lipid classes remained unchanged in the tolerant ones. In the shoots, the glycolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol as well as PC were mostly affected by Al treatment in the susceptible varieties. mRNA accumulation corresponding to genes coding for galactolipid synthases, enzymes of the PC and phosphatidylethanolamine biosynthetic pathways and fatty acid desaturases correlated well with changes in lipid contents in roots and partly explained lipid changes in leaves. The results suggested that the capacity to maintain the proper functioning of some lipid biosynthetic activities and hence the stability of lipid composition may help the rice plant to withstand Al stress.

Journal ArticleDOI
TL;DR: It was determined that in the presence of calcium, annexin A5 reduced the level of baseline leakage from vesicles and reduced or reversed damage due to arachidonic acid, lysophosphatidic acid,Lysoph phosphatidylcholine, diacyl glycerol, monoacylglycersol, spermidine, amyloid-β, amyin, and osmotic shock.
Abstract: Biological membranes are exposed to a number of chemical and physical stresses that may alter the structure of the lipid bilayer in such a way that the permeability barrier to hydrophilic molecules and ions is degraded. These stresses include amphiphilic molecules involved in metabolism and signaling, highly charged polyamines, membrane-permeating peptides, and mechanical and osmotic stresses. As annexins are known to bind to lipid headgroups in the presence of calcium and increase the order of the bilayer lipids, this study addressed whether this activity of annexins provides a potential benefit to the membrane by protecting the bilayer against disruptions of this nature or can promote restoration of the permeability barrier after damage by such agents. The release of carboxyfluorescein from large unilamellar vesicles composed of lipids characteristically present in the inner leaflet of cell membranes (phosphatidylserine, phosphatidylethanolamine, phosphatidylcholine, and cholesterol) was used to measure membrane permeability. It was determined that in the presence of calcium, annexin A5 reduced the level of baseline leakage from vesicles and reduced or reversed damage due to arachidonic acid, lysophosphatidic acid, lysophosphatidylcholine, diacylglycerol, monoacylglycerol, spermidine, amyloid-β, amylin, and osmotic shock. Annexin A6 was also able to provide membrane protection in many but not all of these cases. In a cell, it is likely annexins would move to sites of breakdown of the permeability barrier because of the calcium-dependent promotion of the binding of annexins to membranes at sites of calcium entry. Because of the fundamental importance to life of maintaining the permeability barrier of the cell membrane, it is proposed here that this property of annexins may represent a critical, primordial activity that explains their great evolutionary conservation and abundant expression in most cells.

Journal ArticleDOI
TL;DR: The results established that elevated DAG formation and the increased activity of the rate-regulatory enzyme Pcyt2 were critical modulators of the PE Kennedy pathway, and total PE content in serum deprived breast cancer cells, Therefore, as an essential gene sensitive to nutritional microenvironment, P Cyt2 could represent a legitimate target in novel metabolic strategies for cancer.
Abstract: The significance of phosphatidylethanolamine (PE) in breast cancer cell metabolism was investigated under stress conditions caused by serum deficiency. Serum deficient MCF-7 cells adapt to stress c...

Journal ArticleDOI
TL;DR: Dictyostelium could provide both a novel model system for the analysis of lipid droplet formation in human hepatocytes and a rapid method for identifying VPA-related compounds that show liver toxicology.
Abstract: Lipid droplet formation and subsequent steatosis (the abnormal retention of lipids within a cell) has been reported to contribute to hepatotoxicity and is an adverse effect of many pharmacological agents including the antiepileptic drug valproic acid (VPA). In this study, we have developed a simple model system (Dictyostelium discoideum) to investigate the effects of VPA and related compounds in lipid droplet formation. In mammalian hepatocytes, VPA increases lipid droplet accumulation over a 24-hour period, giving rise to liver cell damage, and we show a similar effect in Dictyostelium following 30 minutes of VPA treatment. Using 3H-labelled polyunsaturated (arachidonic) or saturated (palmitic) fatty acids, we shown that VPA treatment of Dictyostelium gives rise to an increased accumulation of both types of fatty acids in phosphatidylcholine, phosphatidylethanolamine and non-polar lipids in this time period, with a similar trend observed in human hepatocytes (Huh7 cells) labelled with [3H]arachidonic acid. In addition, pharmacological inhibition of β-oxidation in Dictyostelium phenocopies fatty acid accumulation, in agreement with data reported in mammalian systems. Using Dictyostelium, we then screened a range of VPA-related compounds to identify those with high and low lipid-accumulation potential, and validated these activities for effects on lipid droplet formation by using human hepatocytes. Structure-activity relationships for these VPA-related compounds suggest that lipid accumulation is independent of VPA-catalysed teratogenicity and inositol depletion. These results suggest that Dictyostelium could provide both a novel model system for the analysis of lipid droplet formation in human hepatocytes and a rapid method for identifying VPA-related compounds that show liver toxicology.

Journal ArticleDOI
TL;DR: Lack of Btn1p alters phospholipid levels and might play a role in regulating their subcellular distribution and transport of NBD-PtdSer from the ER to both mitochondria and endosomes and/or vacuole is affected in btn1-Δ cells.
Abstract: BTN1, the yeast homolog to human CLN3 (which is defective in Batten disease), has been implicated in the regulation of vacuolar pH, potentially by modulating vacuolar-type H(+)-ATPase (V-ATPase) activity. However, we report that Btn1p and the V-ATPase complex do not physically interact, suggesting that any influence that Btn1p has on V-ATPase is indirect. Because membrane lipid environment plays a crucial role in the activity and function of membrane proteins, we investigated whether cells lacking BTN1 have altered membrane phospholipid content. Deletion of BTN1 (btn1-Δ) led to a decreased level of phosphatidylethanolamine (PtdEtn) in both mitochondrial and vacuolar membranes. In yeast there are two phosphatidylserine (PtdSer) decarboxylases, Psd1p and Psd2p, and these proteins are responsible for the synthesis of PtdEtn in mitochondria and Golgi-endosome, respectively. Deletion of both BTN1 and PSD1 (btn1-Δ psd1-Δ) led to a further decrease in levels of PtdEtn in ER membranes associated to mitochondria (MAMs), with a parallel increase in PtdSer. Fluorescent-labeled PtdSer (NBD-PtdSer) transport assays demonstrated that transport of NBD-PtdSer from the ER to both mitochondria and endosomes and/or vacuole is affected in btn1-Δ cells. Moreover, btn1-Δ affects the synthesis of PtdEtn by the Kennedy pathway and impairs the ability of psd1-Δ cells to restore PtdEtn to normal levels in mitochondria and vacuoles by ethanolamine addition. In summary, lack of Btn1p alters phospholipid levels and might play a role in regulating their subcellular distribution.

Journal ArticleDOI
TL;DR: It is suggested that mitochondrial LCFA oxidation may be significantly influenced by the total unsaturation and percent mole fraction of cardiolipin of the mitochondrial membrane, whereas other indices of membrane structure were not significantly correlated.
Abstract: Membrane lipid composition is thought to influence the function of integral membrane proteins; however, the potential for lipid composition to influence overall mitochondrial long-chain fatty acids (LCFA) oxidation is currently unknown. Therefore, the naturally occurring variability of LCFA oxidation rates within subsarcolemmal (SS) and intermyofibrillar (IMF) mitochondria in muscles with varying oxidative potentials (heart → red → white) was utilized to examine this relationship. To this end, SS and IMF mitochondria were isolated and palmitate oxidation rates were compared to membrane phospholipid composition. Among tissues, rates of palmitate oxidation in mitochondria displayed a 2.5-fold range, creating the required range to determine potential relationships with membrane lipid composition. In general, the percent mole fraction of phospholipid head groups and major fatty acid subclasses were similar in all mitochondria studied. However, rates of palmitate oxidation were positively correlated with both the unsaturation index and relative abundance of cardiolipin within mitochondria (r = 0.57 and 0.49, respectively; p < 0.05). Thus, these results suggest that mitochondrial LCFA oxidation may be significantly influenced by the total unsaturation and percent mole fraction of cardiolipin of the mitochondrial membrane, whereas other indices of membrane structure (e.g., percent mole fraction of other predominant membrane phospholipids, chain length, and ratio of phosphatidylcholine to phosphatidylethanolamine) were not significantly correlated.

Journal ArticleDOI
TL;DR: Using liquid chromatography coupled to high-resolution and tandem mass spectrometry, several species of phosphatidylserine plasmalogens are identified for the first time, including atypical forms having moieties with odd numbers of carbons and unsaturation in sn-2 position.

Journal ArticleDOI
TL;DR: A previously uncharacterized Arabidopsis lecithin:cholesterol acyltransferase (LCAT) family gene was functionally expressed in yeast, where it was demonstrated to encode a novel cytosolic and calcium‐independent phospholipase A with preferences for the sn‐2 position.

Journal ArticleDOI
TL;DR: The three main phospholipid classes in brain showed decreased n-3 polyunsaturated fatty acids, docosahexaenoic acid and peroxidation index, which indicate a different response of brain mitochondrial lipids to rapid growth and maturation.
Abstract: Membrane composition, particularly of mitochondria, could be a critical factor by determining the propagation of reactions involved in mitochondrial function during periods of high oxidative stress such as rapid growth and aging. Considering that phospholipids not only contribute to the structural and physical properties of biological membranes, but also participate actively in cell signaling and apoptosis, changes affecting either class or fatty acid compositions could affect phospholipid properties and, thus, alter mitochondrial function and cell viability. In the present study, heart and brain mitochondrial membrane phospholipid compositions were analyzed in rainbow trout during the four first years of life, a period characterized by rapid growth and a sustained high metabolic rate. Specifically, farmed fish of three ages (1-, 2- and 4-years) were studied, and phospholipid class compositions of heart and brain mitochondria, and fatty acid compositions of individual phospholipid classes were determined. Rainbow trout heart and brain mitochondria showed different phospholipid compositions (class and fatty acid), likely related to tissue-specific functions. Furthermore, changes in phospholipid class and fatty acid compositions with age were also tissue-dependent. Heart mitochondria had lower proportions of cardiolipin (CL), phosphatidylserine (PS) and phosphatidylinositol, and higher levels of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) with age. Heart mitochondrial membranes became more unsaturated with age, with a significative increase of peroxidation index in CL, PS and sphingomyelin (SM). Therefore, heart mitochondria became more susceptible to oxidative damage with age. In contrast, brain mitochondrial PC and PS content decreased in 4-year-old animals while there was an increase in the proportion of SM. The three main phospholipid classes in brain (PC, PE and PS) showed decreased n-3 polyunsaturated fatty acids, docosahexaenoic acid and peroxidation index, which indicate a different response of brain mitochondrial lipids to rapid growth and maturation.

Journal ArticleDOI
TL;DR: Data demonstrate distinct co-existing lipid domains and membrane protein clusters as the monofilm is being compressed and illustrate the significant mutual impact of lipid-protein interactions on lateral membrane architecture.