scispace - formally typeset
Search or ask a question

Showing papers on "Receptor tyrosine kinase published in 2000"


Journal ArticleDOI
13 Oct 2000-Cell
TL;DR: Understanding of the complex signaling networks downstream from RTKs and how alterations in these networks are translated into cellular responses provides an important context for therapeutically countering the effects of pathogenic RTK mutations in cancer and other diseases.

7,056 citations


Journal ArticleDOI
TL;DR: The role of ErbB receptors as normal signal transducers and their contribution to the process of malignant transformation during tumor development are concentrated on.
Abstract: Cells are continuously exposed to diverse stimuli ranging from soluble endocrine and paracrine factors, to signaling molecules on neighboring cells. It is of great importance that these extracellular signals are correctly interpreted by the cell, in order to achieve an appropriate developmental or proliferative response. Receptors of the tyrosine kinase family play pivotal roles in this process. By binding to specific peptide ligands they are able to integrate these external stimuli with internal signal transduction pathways, contributing in this fashion to the ability of the cell to respond correctly to its environment. In this review, we will concentrate on the role of ErbB receptors as normal signal transducers and their contribution to the process of malignant transformation during tumor development. ErbB proteins belong to subclass I of the superfamily of receptor tyrosine kinases (RTKs). There are four members of the ErbB family: epidermal growth factor (EGF) receptor (also termed ErbB1/HER1), ErbB2/Neu/HER2, ErbB3/HER3 and ErbB4/HER4. We will refer to them, henceforth, as the ErbB receptors. All family members have in common an extracellular ligand‐binding domain, a single membrane‐spanning region and a cytoplasmic protein tyrosine kinase domain. A family of ligands, the EGF‐related peptide growth factors, bind the extracellular domain of ErbB receptors leading to the formation of both homo‐ and heterodimers. Dimerization consequently stimulates the intrinsic tyrosine kinase activity of the receptors and triggers autophosphorylation of specific tyrosine residues within the cytoplasmic domain. These phosphorylated residues serve as docking sites for signaling molecules involved in the regulation of intracellular signaling cascades. Ultimately, downstream effects on gene expression determine the biological response to receptor activation. ErbB receptors are expressed in a variety of tissues of epithelial, mesenchymal and neuronal origin, where they play fundamental roles in development, proliferation and differentiation. Moreover, deregulated expression of ErbB receptors, in particular ErbB1 and ErbB2, has …

2,497 citations


Journal ArticleDOI
TL;DR: A number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.

1,925 citations


Journal ArticleDOI
15 Sep 2000-Science
TL;DR: The results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.
Abstract: The inadvertent activation of the Abelson tyrosine kinase (Abl) causes chronic myelogenous leukemia (CML). A small-molecule inhibitor of Abl (STI-571) is effective in the treatment of CML. We report the crystal structure of the catalytic domain of Abl, complexed to a variant of STI-571. Critical to the binding of STI-571 is the adoption by the kinase of an inactive conformation, in which a centrally located "activation loop" is not phosphorylated. The conformation of this loop is distinct from that in active protein kinases, as well as in the inactive form of the closely related Src kinases. These results suggest that compounds that exploit the distinctive inactivation mechanisms of individual protein kinases can achieve both high affinity and high specificity.

1,694 citations


Journal ArticleDOI
TL;DR: FGF signaling also appears to play a role in tumor growth and angiogenesis, and autocrine FGF signaling may be particularly important in the progression of steroid hormone-dependent cancers to a hormone-independent state.
Abstract: Fibroblast growth factors (FGFs) are small polypeptide growth factors, all of whom share in common certain structural characteristics, and most of whom bind heparin avidly. Many FGFs contain signal peptides for secretion and are secreted into the extracellular environment, where theycan bind to the heparan-like glycosaminoglycans (HLGAGs) of the extracellular matrix (ECM). From this reservoir, FGFs mayact directlyon target cells, or theycan be released through digestion of the ECM or the activityof a carrier protein, a secreted FGF binding protein. FGFs bind specific receptor tyrosine kinases in the context of HLGAGs and this binding induces receptor dimerization and activation, ultimatelyresulting in the activation of various signal transduction cascades. Some FGFs are potent angiogenic factors and most playimportant roles in embry onic development and wound healing. FGF signaling also appears to playa role in tumor growth and angiogenesis, and autocrine FGF signaling maybe particularlyimportant in the progression of steroid hormone-dependent cancers to a hormone-independent state.

1,359 citations


Journal ArticleDOI
27 Dec 2000-Oncogene
TL;DR: The role of these active anti-receptor agents in the treatment of patients with cancer is addressed and compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported.
Abstract: Human carcinomas frequently express high levels of receptors in the EGF receptor family, and overexpression of at least two of these receptors, the EGF receptor (EGFr) and closely related ErbB2, has been associated with a more aggressive clinical behavior. Further, transfection or activation of high levels of these two receptors in nonmalignant cell lines can lead to a transformed phenotype. For these reasons therapies directed at preventing the function of these receptors have the potential to be useful anti-cancer treatments. In the last two decades monoclonal antibodies (MAbs) which block activation of the EGFr and ErbB2 have been developed. These MAbs have shown promising preclinical activity and 'chimeric' and 'humanized' MAbs have been produced in order to obviate the problem of host immune reactions. Clinical activity with these antibodies has been documented: trastuzumab, a humanized anti-ErbB2 MAb, is active and was recently approved in combination with paclitaxel for the therapy of patients with metastatic ErbB2-overexpressing breast cancer; IMC-C225, a chimeric anti-EGFr MAb, has shown impressive activity when combined with radiation therapy and reverses resistance to chemotherapy. In addition to antibodies, compounds that directly inhibit receptor tyrosine kinases have shown preclinical activity and early clinical activity has been reported. A series of phase III studies with these antibodies and direct tyrosine kinase inhibitors are ongoing or planned, and will further address the role of these active anti-receptor agents in the treatment of patients with cancer.

1,349 citations


Journal Article
TL;DR: The results suggest that in addition to chronic myelogenous leukemia, STI571 may have clinical potential in the treatment of diseases that involve abnormal activation of c-Kit or PDGF receptor tyrosine kinases.
Abstract: STI571 (formerly known as CGP 57148B) is a protein-tyrosine kinase inhibitor that is currently in clinical trials for the treatment of chronic myelogenous leukemia. STI571 selectively inhibits the Abl and platelet-derived growth factor (PDGF) receptor tyrosine kinases in vitro and blocks cellular proliferation and tumor growth of Bcr-abl - or v- abl -expressing cells. We have further investigated the profile of STI571 against related receptor tyrosine kinases. STI571 was found to potently inhibit the kinase activity of the α- and β-PDGF receptors and the receptor for stem cell factor, but not the closely related c-Fms, Flt-3, Kdr, Flt-1, and Tek tyrosine kinases. Additionally, no inhibition of c-Met or nonreceptor tyrosine kinases such as Src and Jak-2 has been observed. In cell-based assays, STI571 selectively inhibited PDGF and stem cell factor-mediated cellular signaling, including ligand-stimulated receptor autophosphorylation, inositol phosphate formation, and mitogen-activated protein kinase activation and proliferation. These results expand the profile of STI571 and suggest that in addition to chronic myelogenous leukemia, STI571 may have clinical potential in the treatment of diseases that involve abnormal activation of c-Kit or PDGF receptor tyrosine kinases.

1,329 citations


Journal ArticleDOI
TL;DR: Evidence is provided that estrogen-induced Erk-1/-2 activation occurs independently of known estrogen receptors, but requires the expression of the G protein-coupled receptor homolog, GPR30.
Abstract: Estrogen rapidly activates the mitogen-activated protein kinases, Erk-1 and Erk-2, via an as yet unknown mechanism. Here, evidence is provided that estrogen-induced Erk-1/-2 activation occurs independently of known estrogen receptors, but requires the expression of the G protein-coupled receptor homolog, GPR30. We show that 17beta-estradiol activates Erk-1/-2 not only in MCF-7 cells, which express both estrogen receptor alpha (ER alpha) and ER beta, but also in SKBR3 breast cancer cells, which fail to express either receptor. Immunoblot analysis using GPR30 peptide antibodies showed that this estrogen response was associated with the presence of GPR30 protein in these cells. MDA-MB-231 breast cancer cells (ER alpha-, ER beta+) are GPR30 deficient and insensitive to Erk-1/-2 activation by 17beta-estradiol. Transfection of MDA-MB-231 cells with a GPR30 complementary DNA resulted in overexpression of GPR30 protein and conversion to an estrogen-responsive phenotype. In addition, GPR30-dependent Erk-1/-2 activation was triggered by ER antagonists, including ICI 182,780, yet not by 17alpha-estradiol or progesterone. Consistent with acting through a G protein-coupled receptor, estradiol signaling to Erk-1/-2 occurred via a Gbetagamma-dependent, pertussis toxin-sensitive pathway that required Src-related tyrosine kinase activity and tyrosine phosphorylation of tyrosine 317 of the Shc adapter protein. Reinforcing this idea, estradiol signaling to Erk-1/-2 was dependent upon trans-activation of the epidermal growth factor (EGF) receptor via release of heparan-bound EGF (HB-EGF). Estradiol signaling to Erk-1/-2 could be blocked by: 1) inhibiting EGF-receptor tyrosine kinase activity, 2) neutralizing HB-EGF with antibodies, or 3) down-modulating HB-EGF from the cell surface with the diphtheria toxin mutant, CRM-197. Our data imply that ER-negative breast tumors that continue to express GPR30 may use estrogen to drive growth factor-dependent cellular responses.

1,274 citations


Journal ArticleDOI
TL;DR: This review will highlight the important results that have emerged from high-resolution structural studies of protein tyrosine kinases and provide a molecular basis for understanding the mechanisms by which receptor and nonreceptor PTKs are regulated.
Abstract: ▪ Abstract Tyrosine phosphorylation is one of the key covalent modifications that occurs in multicellular organisms as a result of intercellular communication during embryogenesis and maintenance o...

1,156 citations


Journal ArticleDOI
20 Nov 2000-Oncogene
TL;DR: The completion of the human tyrosine kinase family tree provides a framework for further advances in biomedical science and identifies several novel genes and enabled the creation of a nonredundant catalog of tyrosines kinase genes.
Abstract: As the sequencing of the human genome is completed by the Human Genome Project, the analysis of this rich source of information will illuminate many areas in medicine and biology. The protein tyrosine kinases are a large multigene family with particular relevance to many human diseases, including cancer. A search of the human genome for tyrosine kinase coding elements identified several novel genes and enabled the creation of a nonredundant catalog of tyrosine kinase genes. Ninety unique kinase genes can be identified in the human genome, along with five pseudogenes. Of the 90 tyrosine kinases, 58 are receptor type, distributed into 20 subfamilies. The 32 nonreceptor tyrosine kinases can be placed in 10 subfamilies. Additionally, mouse orthologs can be identified for nearly all the human tyrosine kinases. The completion of the human tyrosine kinase family tree provides a framework for further advances in biomedical science.

1,103 citations


Journal ArticleDOI
01 Aug 2000-Blood
TL;DR: Findings show that STI 571 selectively inhibits c-kit tyrosine kinase activity and downstream activation of target proteins involved in cellular proliferation and survival.

Journal ArticleDOI
21 Sep 2000-Nature
TL;DR: A chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases is described, allowing for rapid functional characterization of members of this important gene family.
Abstract: Protein kinases have proved to be largely resistant to the design of highly specific inhibitors, even with the aid of combinatorial chemistry. The lack of these reagents has complicated efforts to assign specific signalling roles to individual kinases. Here we describe a chemical genetic strategy for sensitizing protein kinases to cell-permeable molecules that do not inhibit wild-type kinases. From two inhibitor scaffolds, we have identified potent and selective inhibitors for sensitized kinases from five distinct subfamilies. Tyrosine and serine/threonine kinases are equally amenable to this approach. We have analysed a budding yeast strain carrying an inhibitor-sensitive form of the cyclin-dependent kinase Cdc28 (CDK1) in place of the wild-type protein. Specific inhibition of Cdc28 in vivo caused a pre-mitotic cell-cycle arrest that is distinct from the G1 arrest typically observed in temperature-sensitive cdc28 mutants. The mutation that confers inhibitor-sensitivity is easily identifiable from primary sequence alignments. Thus, this approach can be used to systematically generate conditional alleles of protein kinases, allowing for rapid functional characterization of members of this important gene family.

Journal Article
TL;DR: A novel compound with therapeutic potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role, PTK787/ZK 222584 is very well tolerated and does not impair wound healing.
Abstract: PTK787/ZK 222584 (1-[4-chloroanilino]-4-[4-pyridylmethyl] phthalazine succinate) is a potent inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, active in the submicromolar range. It also inhibits other class III kinases, such as the platelet-derived growth factor (PDGF) receptor beta tyrosine kinase, c-Kit, and c-Fms, but at higher concentrations. It is not active against kinases from other receptor families, such as epidermal growth factor receptor, fibroblast growth factor receptor-1, c-Met, and Tie-2, or intracellular kinases such as c-Src, c-Abl, and protein kinase C-alpha. PTK787/ZK 222584 inhibits VEGF-induced autophosphorylation of kinase insert domain-containing receptor (KDR), endothelial cell proliferation, migration, and survival in the nanomolar range in cell-based assays. In concentrations up to 1 microM, PTK787/ZK 222584 does not have any cytotoxic or antiproliferative effect on cells that do not express VEGF receptors. After oral dosing (50 mg/kg) to mice, plasma concentrations of PTK787/ZK 222584 remain above 1 microM for more than 8 h. PTK787/ZK 222584 induces dose-dependent inhibition of VEGF and PDGF-induced angiogenesis in a growth factor implant model, as well as a tumor cell-driven angiogenesis model after once-daily oral dosing (25-100 mg/kg). In the same dose range, it also inhibits the growth of several human carcinomas, grown s.c. in nude mice, as well as a murine renal carcinoma and its metastases in a syngeneic, orthotopic model. Histological examination of tumors revealed inhibition of microvessel formation in the interior of the tumor. PTK787/ZK 222584 is very well tolerated and does not impair wound healing. It also does not have any significant effects on circulating blood cells or bone marrow leukocytes as a single agent or impair hematopoetic recovery after concomitant cytotoxic anti-cancer agent challenge. This novel compound has therapeutic potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role.

Journal ArticleDOI
TL;DR: The experience in the preclinical and clinical development of a Bcr-Abl inhibitor as a therapeutic agent for chronic myelogenous leukemia (CML) is discussed, and how this experience and other recent advances in the field could contribute to drug development for other diseases are considered.
Abstract: Protein kinases are a large family of homologous proteins comprising 2 major subfamilies, the protein serine/threonine kinases and protein tyrosine kinases (PTKs). Protein kinases function as components of signal transduction pathways, playing a central role in diverse biological processes such as control of cell growth, metabolism, differentiation, and apoptosis. The development of selective protein kinase inhibitors that can block or modulate diseases with abnormalities in these signaling pathways is considered a promising approach for drug development. Because of their deregulation in human cancers, Bcr-Abl, EGFR, HER2, and protein kinase C (PKC), were among the first protein kinases considered as targets for the development of selective inhibitors. Subsequently, as protein kinases have been implicated in more human cancers (1), drug-discovery efforts have been extended and several first-generation small-molecule inhibitors are now in various stages of development. A selection of these agents is shown in Table ​Table11. Table 1 Selected small-molecule ATP-competitive protein kinase inhibitors in development Based on its clear disease association, we saw the Bcr-Abl tyrosine kinase as an ideal target for validating the clinical utility of protein kinase inhibitors. Here, we discuss our experience in the preclinical and clinical development of a Bcr-Abl inhibitor as a therapeutic agent for chronic myelogenous leukemia (CML), and we consider how this experience and other recent advances in the field could contribute to drug development for other diseases.

Journal ArticleDOI
26 Oct 2000-Nature
TL;DR: The structure of the FGF1–FGFR2–heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling.
Abstract: Fibroblast growth factors (FGFs) are a large family of structurally related proteins with a wide range of physiological and pathological activities. Signal transduction requires association of FGF with its receptor tyrosine kinase (FGFR) and heparan sulphate proteoglycan in a specific complex on the cell surface. Direct involvement of the heparan sulphate glycosaminoglycan polysaccharide in the molecular association between FGF and its receptor is essential for biological activity. Although crystal structures of binary complexes of FGF-heparin and FGF-FGFR have been described, the molecular architecture of the FGF signalling complex has not been elucidated. Here we report the crystal structure of the FGFR2 ectodomain in a dimeric form that is induced by simultaneous binding to FGF1 and a heparin decasaccharide. The complex is assembled around a central heparin molecule linking two FGF1 ligands into a dimer that bridges between two receptor chains. The asymmetric heparin binding involves contacts with both FGF1 molecules but only one receptor chain. The structure of the FGF1-FGFR2-heparin ternary complex provides a structural basis for the essential role of heparan sulphate in FGF signalling.

Journal ArticleDOI
14 Sep 2000-Nature
TL;DR: In this article, a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin was used to identify a molecular mechanism underlying this subcellular redistribution.
Abstract: Insulin stimulates the transport of glucose into fat and muscle cells. Although the precise molecular mechanisms involved in this process remain uncertain, insulin initiates its actions by binding to its tyrosine kinase receptor, leading to the phosphorylation of intracellular substrates. One such substrate is the Cbl proto-oncogene product. Cbl is recruited to the insulin receptor by interaction with the adapter protein CAP, through one of three adjacent SH3 domains in the carboxy terminus of CAP. Upon phosphorylation of Cbl, the CAP-Cbl complex dissociates from the insulin receptor and moves to a caveolin-enriched, triton-insoluble membrane fraction. Here, to identify a molecular mechanism underlying this subcellular redistribution, we screened a yeast two-hybrid library using the amino-terminal region of CAP and identified the caveolar protein flotillin. Flotillin forms a ternary complex with CAP and Cbl, directing the localization of the CAP-Cbl complex to a lipid raft subdomain of the plasma membrane. Expression of the N-terminal domain of CAP in 3T3-L1 adipocytes blocks the stimulation of glucose transport by insulin, without affecting signalling events that depend on phosphatidylinositol-3-OH kinase. Thus, localization of the Cbl-CAP complex to lipid rafts generates a pathway that is crucial in the regulation of glucose uptake.

Journal ArticleDOI
TL;DR: The growth of human tumors and development of metastases depend on the de novo formation of blood vessels, and inhibition of the VEGF tyrosine kinase signaling pathway blocks new blood vessel formation in growing tumors, leading to stasis or regression of tumor growth.
Abstract: The growth of human tumors and development of metastases depend on the de novo formation of blood vessels. The formation of new blood vessels is tightly regulated by specific growth factors that target receptor tyrosine kinases (RTKs). Vascular endothelial growth factor (VEGF) and the Flk-1/KDR RTK have been implicated as the key endothelial cell-specific factor signaling pathway required for pathological angiogenesis, including tumor neovascularization. Inhibition of the VEGF tyrosine kinase signaling pathway blocks new blood vessel formation in growing tumors, leading to stasis or regression of tumor growth. Advances in understanding the biology of angiogenesis have led to the development of several therapeutic modalities for the inhibition of the VEGF tyrosine kinase signaling pathway. A number of these modalities are under investigation in clinical studies to evaluate their potential to treat human cancers.

Journal ArticleDOI
TL;DR: Findings indicate that KIT may be activated by mutations in at least three domains-extracellular, juxtamembrane, and kinase-in GISTs.
Abstract: Gastrointestinal stromal tumors (GISTs) are the most common mesenchymal neoplasms arising in the gastrointestinal tract. GISTs express the KIT receptor tyrosine kinase, and many cases have activating mutations in the KIT juxtamembrane region. We now report an analysis of KIT cDNA and genomic sequences in eight GISTs that lack juxtamembrane region mutations. Six cases contained heterozygous exon 9 mutations in which six nucleotides, encoding Ala-Tyr, were duplicated. The other two cases contained homozygous exon 13 missense mutations, resulting in substitution of Glu for Lys642, that were associated with constitutive KIT tyrosine phosphorylation. Sequence analysis of DNAs from nonneoplastic companion tissues revealed that both the exon 9 and exon 13 mutations were somatic. These are the first descriptions, in any tumor, of mutations in KIT exons encoding the C-terminal end of the extracellular domain and the first part of the split kinase domain. These findings indicate that KIT may be activated by mutations in at least three domains—extracellular, juxtamembrane, and kinase—in GISTs.

Journal ArticleDOI
TL;DR: The identified and characterized a small-molecule inhibitor, SU6656, which exhibits selectivity for Src and other members of the Src family, and microinjection experiments demonstrated that a Shc molecule carrying mutations of tyrosines 239 and 240, in conjunction with an SH2 domain mutation, interfered with PDGF-stimulated DNA synthesis.
Abstract: The use of small-molecule inhibitors to study molecular components of cellular signal transduction pathways provides a means of analysis complementary to currently used techniques, such as antisense, dominant-negative (interfering) mutants and constitutively activated mutants. We have identified and characterized a small-molecule inhibitor, SU6656, which exhibits selectivity for Src and other members of the Src family. A related inhibitor, SU6657, inhibits many kinases, including Src and the platelet-derived growth factor (PDGF) receptor. The use of SU6656 confirmed our previous findings that Src family kinases are required for both Myc induction and DNA synthesis in response to PDGF stimulation of NIH 3T3 fibroblasts. By comparing PDGF-stimulated tyrosine phosphorylation events in untreated and SU6656-treated cells, we found that some substrates (for example, c-Cbl, and protein kinase C δ) were Src family substrates whereas others (for example, phospholipase C-γ) were not. One protein, the adaptor Shc, was a substrate for both Src family kinases (on tyrosines 239 and 240) and a distinct tyrosine kinase (on tyrosine 317, which is perhaps phosphorylated by the PDGF receptor itself). Microinjection experiments demonstrated that a Shc molecule carrying mutations of tyrosines 239 and 240, in conjunction with an SH2 domain mutation, interfered with PDGF-stimulated DNA synthesis. Deletion of the phosphotyrosine-binding domain also inhibited synthesis. These inhibitions were overcome by heterologous expression of Myc, supporting the hypothesis that Shc functions in the Src pathway. SU6656 should prove a useful additional tool for further dissecting the role of Src kinases in this and other signal transduction pathways.

Journal ArticleDOI
TL;DR: It is shown that activation of endogenous EphA2 kinase induces an inactive conformation of integrins and inhibits cell spreading, migration and integrin-mediated adhesion in resting cells.
Abstract: Interactions between receptor tyrosine kinases of the Eph family and their ligands, ephrins, are implicated in establishment of organ boundaries and repulsive guidance of cell migration during development, but the mechanisms by which this is achieved are unclear Here we show that activation of endogenous EphA2 kinase induces an inactive conformation of integrins and inhibits cell spreading, migration and integrin-mediated adhesion Moreover, EphA2 is constitutively associated with focal-adhesion kinase (FAK) in resting cells Within one minute after stimulation of EphA2 with its ligand, ephrin-A1, the protein tyrosine phosphatase SHP2 is recruited to EphA2; this is followed by dephosphorylation of FAK and paxillin, and dissociation of the FAK-EphA2 complex We conclude that Eph kinases mediate some of their functions by negatively regulating integrins and FAK

Journal ArticleDOI
01 Dec 2000-Blood
TL;DR: Taken together, Flt3-ITD mutations induce factor-independent growth and leukemogenesis of 32D cells that are mediated by the Ras and STAT5 pathways.

Journal Article
TL;DR: Oral or i.p. administration of SU6668 in athymic mice resulted in significant growth inhibition of a diverse panel of human tumor xenografts of glioma, melanoma, lung, colon, ovarian, and epidermoid origin, and intravital multifluorescence videomicroscopy of C6glioma xenografteds in the dorsal skinfold chamber model revealed thatSU6668 treatment suppressed tumor angiogenesis.
Abstract: Vascular endothelial growth factor, fibroblast growth factor (FGF), and platelet-derived growth factor (PDGF) and their cognate receptor tyrosine kinases are strongly implicated in angiogenesis associated with solid tumors. Using rational drug design coupled with traditional screening technologies, we have discovered SU6668, a novel inhibitor of these receptors. Biochemical kinetic studies using isolated Flk-1, FGF receptor 1, and PDGF receptor β kinases revealed that SU6668 has competitive inhibitory properties with respect to ATP. Cocrystallographic studies of SU6668 in the catalytic domain of FGF receptor 1 substantiated the adenine mimetic properties of its oxindole core. Molecular modeling of SU6668 in the ATP binding pockets of the Flk-1/KDR and PDGF receptor kinases provided insight to explain the relative potency and selectivity of SU6668 for these receptors. In cellular systems, SU6668 inhibited receptor tyrosine phosphorylation and mitogenesis after stimulation of cells by appropriate ligands. Oral or i.p. administration of SU6668 in athymic mice resulted in significant growth inhibition of a diverse panel of human tumor xenografts of glioma, melanoma, lung, colon, ovarian, and epidermoid origin. Furthermore, intravital multifluorescence videomicroscopy of C6 glioma xenografts in the dorsal skinfold chamber model revealed that SU6668 treatment suppressed tumor angiogenesis. Finally, SU6668 treatment induced striking regression of large established human tumor xenografts. Investigations of SU6668 activity in cancer patients are ongoing in Phase I clinical trials.

Journal ArticleDOI
TL;DR: It is suggested that the cellular response to an ERK signal depends on bothERK signal intensity and duration, and studies showing that receptor tyrosine kinases and integrins differentially regulate the ERK signals in G1 phase are discussed.
Abstract: Growth factors and the extracellular matrix provide the environmental cues that control the proliferation of most cell types The binding of growth factors and matrix proteins to receptor tyrosine kinases and integrins, respectively, regulates several cytoplasmic signal transduction cascades, among which activation of the mitogen-activated protein kinase cascade, ras --> Raf --> MEK --> ERK, is perhaps the best characterized Curiously, ERK activation has been associated with both stimulation and inhibition of cell proliferation In this review, we summarize recent studies that connect ERK signaling to G1 phase cell cycle control and suggest that the cellular response to an ERK signal depends on both ERK signal intensity and duration We also discuss studies showing that receptor tyrosine kinases and integrins differentially regulate the ERK signal in G1 phase

Journal ArticleDOI
27 Oct 2000-Cell
TL;DR: Experiments with Met-positive and Met-deficient cell lines demonstrate that Met is required for InlB-dependent entry of L. monocytogenes, a novel Met agonist that induces bacterial entry through exploitation of a host RTK pathway.

Journal ArticleDOI
TL;DR: The role of RAFTK/Pyk2 in various signalling cascades is described and the differential signalling by FAK and RAFTk/ Pyk2 is detailed.

Journal ArticleDOI
30 Jun 2000-Science
TL;DR: Results indicate that the extracellular domain of BRI1 perceives brassinosteroids, which suggest a general signaling mechanism for the LRR receptor kinases of plants, and should allow the discovery of ligands for the largest group of plant receptor Kinases.
Abstract: An assay was developed to study plant receptor kinase activation and signaling mechanisms The extracellular leucine-rich repeat (LRR) and transmembrane domains of the Arabidopsis receptor kinase BRI1, which is implicated in brassinosteroid signaling, were fused to the serine/threonine kinase domain of XA21, the rice disease resistance receptor The chimeric receptor initiates plant defense responses in rice cells upon treatment with brassinosteroids These results, which indicate that the extracellular domain of BRI1 perceives brassinosteroids, suggest a general signaling mechanism for the LRR receptor kinases of plants This system should allow the discovery of ligands for the LRR kinases, the largest group of plant receptor kinases

Journal ArticleDOI
20 Nov 2000-Oncogene
TL;DR: It has been found that JAK kinase function is required for optimal activation of the Src-kinase cascade, the Ras-MAP kinase pathway, the PI3K-AKT pathway and STAT signaling following the interaction of cytokine/interferon receptors with their ligands.
Abstract: Cytoplasmic Janus protein tyrosine kinases (JAKs) are crucial components of diverse signal transduction pathways that govern cellular survival, proliferation, differentiation and apoptosis. Evidence to date, indicates that JAK kinase function may integrate components of diverse signaling cascades. While it is likely that activation of STAT proteins may be an important function attributed to the JAK kinases, it is certainly not the only function performed by this key family of cytoplasmic tyrosine kinases. Emerging evidence indicates that phosphorylation of cytokine and growth factor receptors may be the primary functional attribute of JAK kinases. The JAK-triggered receptor phosphorylation can potentially be a rate-limiting event for a successful culmination of downstream signaling events. In support of this hypothesis, it has been found that JAK kinase function is required for optimal activation of the Src-kinase cascade, the Ras-MAP kinase pathway, the PI3K-AKT pathway and STAT signaling following the interaction of cytokine/interferon receptors with their ligands. Aberrations in JAK kinase activity, that may lead to derailment of one or more of the above mentioned pathways could disrupt normal cellular responses and result in disease states. Thus, over-activation of JAK kinases has been implicated in tumorigenesis. In contrast, loss of JAK kinase function has been found to result in disease states such as severe-combined immunodeficiency. In summary, optimal JAK kinase activity is a critical determinant of normal transmission of cytokine and growth factor signals.

Journal ArticleDOI
TL;DR: The protein tyrosine phosphatase PTP1B is responsible for negatively regulating insulin signaling by dephosphorylating the phosphotyrosine residues of the insulin receptor kinase (IRK) activation segment by integrating crystallographic, kinetic, and PTP2B peptide binding studies to define the molecular specificity of this reaction.

Journal ArticleDOI
24 Feb 2000-Oncogene
TL;DR: The data suggest a potential role for a subset of NF-κB and IκB family proteins, particularly NF-σB/p52 and Bcl-3, in human breast cancer and suggest that the activation of functional NF-kkB in these tumors likely involves a signal transduction pathway distinct from that utilized by cytokines.
Abstract: Members of the NF-κB/Rel transcription factor family have been shown recently to be required for cellular transformation by oncogenic Ras and by other oncoproteins and to suppress transformation-associated apoptosis. Furthermore, NF-κB has been shown to be activated by several oncoproteins including HER2/Neu, a receptor tyrosine kinase often expressed in human breast cancer. Human breast cancer cell lines, human breast tumors and normal adjacent tissue were analysed by gel mobility shift assay, immunoblotting of nuclear extracts and immunohistochemistry for activation of NF-κB. Furthermore, RNA levels for NF-κB-activated genes were analysed in order to determine if NF-κB is functionally active in human breast cancer. Our data indicate that the p65/RelA subunit of NF-κB is activated (i.e., nuclear) in breast cancer cell lines. However, breast tumors exhibit an absence or low level of nuclear p65/RelA but show activated c-Rel, p50 and p52 as compared to nontumorigenic adjacent tissue. Additionally, the IκB homolog Bcl-3, which functions to stimulate transcription with p50 or p52, was also activated in breast tumors. There was no apparent correlation between estrogen receptor status and levels of nuclear NF-κB complexes. Transcripts of NF-κB-regulated genes were found elevated in breast tumors, as compared to adjacent normal tissue, indicating functional NF-κB activity. These data suggest a potential role for a subset of NF-κB and IκB family proteins, particularly NF-κB/p52 and Bcl-3, in human breast cancer. Additionally, the activation of functional NF-κB in these tumors likely involves a signal transduction pathway distinct from that utilized by cytokines.

Journal ArticleDOI
Yong Chao Ma1, Jianyun Huang1, Shariq Ali1, William R. Lowry1, Xin-Yun Huang1 
01 Sep 2000-Cell
TL;DR: It is demonstrated that Galphas and Galphai, but neither Galphaq, Galpha12 nor Gbetay, directly stimulate the kinase activity of downregulated c-Src, and the Src family tyrosine kinases are direct effectors of G proteins.