scispace - formally typeset
Search or ask a question

Showing papers on "Vascular endothelial growth factor A published in 2000"


Journal ArticleDOI
TL;DR: The results show that MMP-9 is a component of theAngiogenic switch, and MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of M MP-9.
Abstract: During carcinogenesis of pancreatic islets in transgenic mice, an angiogenic switch activates the quiescent vasculature Paradoxically, vascular endothelial growth factor (VEGF) and its receptors are expressed constitutively Nevertheless, a synthetic inhibitor (SU5416) of VEGF signalling impairs angiogenic switching and tumour growth Two metalloproteinases, MMP-2/gelatinase-A and MMP-9/gelatinase-B, are upregulated in angiogenic lesions MMP-9 can render normal islets angiogenic, releasing VEGF MMP inhibitors reduce angiogenic switching, and tumour number and growth, as does genetic ablation of MMP-9 Absence of MMP-2 does not impair induction of angiogenesis, but retards tumour growth, whereas lack of urokinase has no effect Our results show that MMP-9 is a component of the angiogenic switch

2,657 citations


Journal ArticleDOI
01 Feb 2000-Blood
TL;DR: In an in vivo human model, it is found that the neo-intima formed on the surface of left ventricular assist devices is colonized with AC133(+)VEGFR-2(+) cells, suggesting a phenotypically and functionally distinct population of circulating endothelial cells that may play a role in neo-angiogenesis.

2,404 citations


Journal Article
TL;DR: It is demonstrated that in human prostate cancer cells, basal-, growth factor- and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor Hif-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively.
Abstract: Dysregulated signal transduction from receptor tyrosine kinases to phosphatidylinositol 3-kinase (PI3K), AKT (protein kinase B), and its effector FKBP-rapamycin-associated protein (FRAP) occurs via autocrine stimulation or inactivation of the tumor suppressor PTEN in many cancers. Here we demonstrate that in human prostate cancer cells, basal-, growth factor-, and mitogen-induced expression of hypoxia-inducible factor 1 (HIF-1) alpha, the regulated subunit of the transcription factor HIF-1, is blocked by LY294002 and rapamycin, inhibitors of PI3K and FRAP, respectively. HIF-1-dependent gene transcription is blocked by dominant-negative AKT or PI3K and by wild-type PTEN, whereas transcription is stimulated by constitutively active AKT or dominant-negative PTEN. LY294002 and rapamycin also inhibit growth factor- and mitogen-induced secretion of vascular endothelial growth factor, the product of a known HIF-1 target gene, thus linking the PI3K/PTEN/AKT/FRAP pathway, HIF-1, and tumor angiogenesis. These data indicate that pharmacological agents that target PI3K, AKT, or FRAP in tumor cells inhibit HIF-1alpha expression and that such inhibition may contribute to therapeutic efficacy.

1,487 citations


Journal ArticleDOI
02 Nov 2000-Nature
TL;DR: It is shown that Flk1+ cells derived from embryonic stem cells can differentiate into both endothelial and mural cells and can reproduce the vascular organization process and offer potential for tissue engineering of the vascular system.
Abstract: Interaction between endothelial cells and mural cells (pericytes and vascular smooth muscle) is essential for vascular development and maintenance Endothelial cells arise from Flk1-expressing (Flk1+) mesoderm cells, whereas mural cells are believed to derive from mesoderm, neural crest or epicardial cells and migrate to form the vessel wall Difficulty in preparing pure populations of these lineages has hampered dissection of the mechanisms underlying vascular formation Here we show that Flk1+ cells derived from embryonic stem cells can differentiate into both endothelial and mural cells and can reproduce the vascular organization process Vascular endothelial growth factor promotes endothelial cell differentiation, whereas mural cells are induced by platelet-derived growth factor-BB Vascular cells derived from Flk1+ cells can organize into vessel-like structures consisting of endothelial tubes supported by mural cells in three-dimensional culture Injection of Flk1+ cells into chick embryos showed that they can incorporate as endothelial and mural cells and contribute to the developing vasculature in vivo Our findings indicate that Flk1+ cells can act as 'vascular progenitor cells' to form mature vessels and thus offer potential for tissue engineering of the vascular system

1,411 citations


Journal ArticleDOI
TL;DR: It is shown that acute administration of angiopoietin-1 does indeed protect adult vasculature from leaking, countering the potentially lethal actions of VEGF and inflammatory agents.
Abstract: Pathological increases in vascular leakage lead to edema and swelling, causing serious problems in brain tumors, in diabetic retinopathy, after strokes, during sepsis and also in inflammatory conditions such as rheumatoid arthritis and asthma. Although many agents and disease processes increase vascular leakage, no known agent specifically makes vessels resistant to leaking. Vascular endothelial growth factor (VEGF) and the angiopoietins function together during vascular development, with VEGF acting early during vessel formation, and angiopoietin-1 acting later during vessel remodeling, maturation and stabilization. Although VEGF was initially called vascular permeability factor, there has been less focus on its permeability actions and more effort devoted to its involvement in vessel growth and applications in ischemia and cancer. Recent transgenic approaches have confirmed the profound permeability effects of VEGF (refs. 12-14), and have shown that transgenic angiopoietin-1 acts reciprocally as an anti-permeability factor when provided chronically during vessel formation, although it also profoundly affects vascular morphology when thus delivered. To be useful clinically, angiopoietin-1 would have to inhibit leakage when acutely administered to adult vessels, and this action would have to be uncoupled from its profound angiogenic capabilities. Here we show that acute administration of angiopoietin-1 does indeed protect adult vasculature from leaking, countering the potentially lethal actions of VEGF and inflammatory agents.

1,306 citations


Journal Article
TL;DR: A new class of HIF-1-responsive gene is defined, the activation of which has implications for the understanding of hypoxic tumor metabolism and which may provide endogenous markers for tumor hypoxia.
Abstract: The transcriptional complex hypoxia-inducible factor-1 (HIF-1) has emerged as an important mediator of gene expression patterns in tumors, although the range of responding genes is still incompletely defined. Here we show that the tumor-associated carbonic anhydrases (CAs) are tightly regulated by this system. Both CA9 and CA12 were strongly induced by hypoxia in a range of tumor cell lines. In renal carcinoma cells that are defective for the von Hippel-Lindau (VHL) tumor suppressor, up-regulation of these CAs is associated with loss of regulation by hypoxia, consistent with the critical function of pVHL in the regulation of HIF-1. Further studies of CA9 defined a HIF-1-dependent hypoxia response element in the minimal promoter and demonstrated that tight regulation by the HIF/pVHL system was reflected in the pattern of CA IX expression within tumors. Generalized up-regulation of CA IX in VHL-associated renal cell carcinoma contrasted with focal perinecrotic expression in a variety of non-VHL-associated tumors. In comparison with vascular endothelial growth factor mRNA, expression of CA IX demonstrated a similar, although more tightly circumscribed, pattern of expression around regions of necrosis and showed substantial although incomplete overlap with activation of the hypoxia marker pimonidazole. These studies define a new class of HIF-1-responsive gene, the activation of which has implications for the understanding of hypoxic tumor metabolism and which may provide endogenous markers for tumor hypoxia.

1,253 citations


Journal ArticleDOI
TL;DR: It is demonstrated that homozygous deletion of the p53 tumor suppressor gene via homologous recombination in a human cancer cell line promotes the neovascularization and growth of tumor xenografts in nude mice.
Abstract: The switch to an angiogenic phenotype is a fundamental determinant of neoplastic growth and tumor progression. We demonstrate that homozygous deletion of the p53 tumor suppressor gene via homologous recombination in a human cancer cell line promotes the neovascularization and growth of tumor xenografts in nude mice. We find that p53 promotes Mdm2-mediated ubiquitination and proteasomal degradation of the HIF-1α subunit of hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that regulates cellular energy metabolism and angiogenesis in response to oxygen deprivation. Loss of p53 in tumor cells enhances HIF-1α levels and augments HIF-1-dependent transcriptional activation of the vascular endothelial growth factor (VEGF) gene in response to hypoxia. Forced expression of HIF-1α in p53-expressing tumor cells increases hypoxia-induced VEGF expression and augments neovascularization and growth of tumor xenografts. These results indicate that amplification of normal HIF-1-dependent responses to hypoxia via loss of p53 function contributes to the angiogenic switch during tumorigenesis.

1,160 citations


Journal ArticleDOI
TL;DR: Results indicate that thrombospondin-1, and possibly other broad-spectrum natural inhibitors of angiogenesis, act in vivo by inducing receptor-mediated apoptosis in activated microvascular endothelial cells.
Abstract: Thrombospondin-1 (TSP-1) is a naturally occurring inhibitor of angiogenesis that limits vessel density in normal tissues and curtails tumor growth. Here, we show that the inhibition of angiogenesis in vitro and in vivo and the induction of apoptosis by thrombospondin-1 all required the sequential activation of CD36, p59fyn, caspase-3 like proteases and p38 mitogen-activated protein kinases. We also detected increased endothelial cell apoptosis in situ at the margins of tumors in mice treated with thrombospondin-1. These results indicate that thrombospondin-1, and possibly other broad-spectrum natural inhibitors of angiogenesis, act in vivo by inducing receptor-mediated apoptosis in activated microvascular endothelial cells.

961 citations


Journal Article
TL;DR: A novel compound with therapeutic potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role, PTK787/ZK 222584 is very well tolerated and does not impair wound healing.
Abstract: PTK787/ZK 222584 (1-[4-chloroanilino]-4-[4-pyridylmethyl] phthalazine succinate) is a potent inhibitor of vascular endothelial growth factor (VEGF) receptor tyrosine kinases, active in the submicromolar range. It also inhibits other class III kinases, such as the platelet-derived growth factor (PDGF) receptor beta tyrosine kinase, c-Kit, and c-Fms, but at higher concentrations. It is not active against kinases from other receptor families, such as epidermal growth factor receptor, fibroblast growth factor receptor-1, c-Met, and Tie-2, or intracellular kinases such as c-Src, c-Abl, and protein kinase C-alpha. PTK787/ZK 222584 inhibits VEGF-induced autophosphorylation of kinase insert domain-containing receptor (KDR), endothelial cell proliferation, migration, and survival in the nanomolar range in cell-based assays. In concentrations up to 1 microM, PTK787/ZK 222584 does not have any cytotoxic or antiproliferative effect on cells that do not express VEGF receptors. After oral dosing (50 mg/kg) to mice, plasma concentrations of PTK787/ZK 222584 remain above 1 microM for more than 8 h. PTK787/ZK 222584 induces dose-dependent inhibition of VEGF and PDGF-induced angiogenesis in a growth factor implant model, as well as a tumor cell-driven angiogenesis model after once-daily oral dosing (25-100 mg/kg). In the same dose range, it also inhibits the growth of several human carcinomas, grown s.c. in nude mice, as well as a murine renal carcinoma and its metastases in a syngeneic, orthotopic model. Histological examination of tumors revealed inhibition of microvessel formation in the interior of the tumor. PTK787/ZK 222584 is very well tolerated and does not impair wound healing. It also does not have any significant effects on circulating blood cells or bone marrow leukocytes as a single agent or impair hematopoetic recovery after concomitant cytotoxic anti-cancer agent challenge. This novel compound has therapeutic potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role.

910 citations


Journal ArticleDOI
TL;DR: The results suggest that the balance between the ALK1 and ALK5 signaling pathways in endothelial cells plays a crucial role in determining vascular endothelial properties during angiogenesis.
Abstract: The activin receptor-like kinase 1 (ALK1) is a type I receptor for transforming growth factor-β (TGF-β) family proteins. Expression of ALK1 in blood vessels and mutations of the ALK1 gene in human type II hereditary hemorrhagic telangiectasia patients suggest that ALK1 may have an important role during vascular development. To define the function of ALK1 during development, we inactivated the ALK1 gene in mice by gene targeting. The ALK1 homozygous embryos die at midgestation, exhibiting severe vascular abnormalities characterized by excessive fusion of capillary plexes into cavernous vessels and hyperdilation of large vessels. These vascular defects are associated with enhanced expression of angiogenic factors and proteases and are characterized by deficient differentiation and recruitment of vascular smooth muscle cells. The blood vessel defects in ALK1-deficient mice are reminiscent of mice lacking TGF-β1, TGF-β type II receptor (TβR-II), or endoglin, suggesting that ALK1 may mediate TGF-β1 signal in endothelial cells. Consistent with this hypothesis, we demonstrate that ALK1 in endothelial cells binds to TGF-β1 and TβR-II. Furthermore, the ALK1 signaling pathway can inhibit TGF-β1-dependent transcriptional activation mediated by the known TGF-β1 type I receptor, ALK5. Taken together, our results suggest that the balance between the ALK1 and ALK5 signaling pathways in endothelial cells plays a crucial role in determining vascular endothelial properties during angiogenesis.

851 citations


Journal Article
TL;DR: Endothelial cell signal transduction mechanisms involved in angiogenesis have come into focus in cancer research when it was realized that solid tumors are dependent on neovascularization.
Abstract: Endothelial cell signal transduction mechanisms involved in angiogenesis have come into focus in cancer research when it was realized that solid tumors are dependent on neovascularization [(1)][1] . Unlike normal human endothelial cells, which are quiescent except in the reproductive organs of

Journal Article
TL;DR: The evidence from these experiments indicates that hypoxic response via Hif-1α is an important positive factor in solid tumor growth and that HIF-1 α affects tumor expansion in ways unrelated to its regulation of VEGF expression.
Abstract: Deficiencies in oxygenation are widespread in solid tumors. The transcription factor hypoxia-inducible factor (HIF)-1alpha is an important mediator of the hypoxic response of tumor cells and controls the up-regulation of a number of factors important for solid tumor expansion, including the angiogenic factor vascular endothelial growth factor (VEGF). We have isolated two cell lines nullizygous for HIF-1alpha, one from embryos genetically null for HIF-1alpha, and the other from embryos carrying loxP-flanked alleles of the gene, which allows for cre-mediated excision. The loss of HIF-1alpha negatively affects tumor growth in these two sets of H-ras-transformed cell lines, and this negative effect is not due to deficient vascularization. Despite differences in VEGF expression, vascular density is similar in wild-type and HIF-1alpha-null tumors. The evidence from these experiments indicates that hypoxic response via HIF-1alpha is an important positive factor in solid tumor growth and that HIF-1alpha affects tumor expansion in ways unrelated to its regulation of VEGF expression.

Journal Article
TL;DR: Interaction between the immune network system and angiogenesis is important for progression of human breast cancer, and that MCP-1 may play an important role in the regulation of angiogenic and the immune system is indicated.
Abstract: Tumor cells stimulate the formation of stroma that secretes various mediators pivotal for tumor growth, including growth factors, cytokines, and proteases. However, little is known about the local regulation of these soluble mediators in the human tumor microenvironment. In this study, the local expression of cytokines, chemokines, and angiogenic factors was investigated in primary breast cancer tissue. The concentrations of interleukin (IL)-1, IL-4, IL-6, IL-10, IL-12, tumor necrosis factor (TNF)-alpha, IFN-gamma, IL-8, macrophage chemoattractant protein (MCP)-1, epithelial-neutrophil activating peptide-78, vascular endothelial growth factor, and thymidine phosphorylase (TP) were measured in 151 primary breast cancer extracts by ELISA. Tumor-associated macrophages (TAMs) were also examined by immunohistochemistry with anti-CD68 antibodies. The correlation between soluble mediators and the relationship between TAM count and soluble mediators were evaluated. MCP-1 concentration was correlated significantly with the level of vascular endothelial growth factor, TP, TNF-alpha, and IL-8, which are potent angiogenic factors. IL-4 concentration was correlated significantly with IL-8 and IL-10. On the other hand, an inverse association was observed between TP and IL-12. The level of MCP-1 was associated significantly with TAM accumulation. In the immunohistochemical analysis, MCP-1 expression was observed in both infiltrating macrophages and tumor cells. Prognostic analysis revealed that high expression of MCP-1, as well as of VEGF, was a significant indicator of early relapse. These findings indicate that interaction between the immune network system and angiogenesis is important for progression of human breast cancer, and that MCP-1 may play an important role in the regulation of angiogenesis and the immune system.

Journal Article
TL;DR: Data indicate that defective DC function in cancer patients is the result of decreased numbers of competent DCs and the accumulation of immature cells, which may have significant clinical implications.
Abstract: Defective dendritic cell (DC) function has been described previously in cancer patients and tumor-bearing mice. It can be an important factor in the escape of tumors from immune system control. However, the mechanism and clinical significance of this phenomenon remain unclear. Here, 93 patients with breast, head and neck, and lung cancer were investigated. The function of peripheral blood and tumor draining lymph node DCs was equally impaired in cancer patients, consistent with a systemic rather than a local effect of tumor on DCs. The number of DCs was dramatically reduced in the peripheral blood of cancer patients. This decrease was associated with the accumulation of cells lacking markers of mature hematopoietic cells. The presence of these immature cells was closely associated with the stage and duration of the disease. Surgical removal of tumor resulted in partial reversal of the observed effects. The presence of immature cells in the peripheral blood of cancer patients was closely associated with an increased plasma level of vascular endothelial growth factor but not interleukin 6, granulocyte macrophage colony-stimulating factor, macrophage colony-stimulating factor, interleukin 10, or transforming growth factor-β and was decreased in lung cancer patients receiving therapy with antivascular endothelial growth factor antibodies. These data indicate that defective DC function in cancer patients is the result of decreased numbers of competent DCs and the accumulation of immature cells. This effect may have significant clinical implications.

Journal ArticleDOI
01 Aug 2000-Cytokine
TL;DR: A significant correlation was observed between lipopolysaccharide stimulated peripheral blood mononuclear cell (PBMC) VEGF protein production and genotype for the +405 polymorphism and a combined sequence specific priming (SSP) PCR typing system to determine the cis/trans orientation of each allele and hence, ascertain haplotypes.

Journal ArticleDOI
TL;DR: In this model, unregulated continuous expression of VEGF is associated with a high rate of failure to thrive/death and formation of endothelial cell-derived intramural vascular tumors in the implantation site, which underscores the importance of regulating V EGF expression for therapeutic angiogenesis.
Abstract: Background—Vascular endothelial growth factor (VEGF) is being investigated for therapeutic angiogenesis in ischemic myocardium. Primarily, transient delivery systems have been tested. The goal of this study was to investigate the effects of continuous expression of VEGF in myocardium by use of myoblast-mediated delivery. Methods and Results—Primary murine myoblasts (5×105 cells in 10 μL of PBS with 0.5% BSA) expressing both the murine VEGF gene and the β-galactosidase (β-gal) gene from a retroviral promoter were implanted in the ventricular wall of immunodeficient mice (n=11) via a subdiaphragmatic approach. Control immunodeficient mice (n=12) were injected with the same number of myoblasts expressing only the β-gal gene. Between days 14 and 16, surviving mice were euthanized and the hearts processed for histology. In the experimental group, 11 of 11 mice demonstrated failure to thrive by day 13; 5 deaths occurred between days 8 and 15. There were no complications in the control mice. Histochemistry docum...

Journal ArticleDOI
TL;DR: It was found that tumor growth was markedly attenuated inCOX-2(-/-), but not COX-1(-/-) or wild- type mice, and treatment of wild-type C57BL/6 mice bearing LLC tumors with a selective COX -2 inhibitor reduced tumor growth.
Abstract: Cyclooxygenase-2 (COX-2; Ptgs2) acts as a tumor promoter in rodent models for colorectal cancer, but its precise role in carcinogenesis remains unclear. We evaluated the contribution of host-derived COX-1 and COX-2 in tumor growth using both genetic and pharmacological approaches. Lewis lung carcinoma (LLC) cells grow rapidly as solid tumors when implanted in C57BL/6 mice. We found that tumor growth was markedly attenuated in COX-2(-/-), but not COX-1(-/-) or wild-type mice. Treatment of wild-type C57BL/6 mice bearing LLC tumors with a selective COX-2 inhibitor also reduced tumor growth. A decrease in vascular density was observed in tumors grown in COX-2(-/-) mice when compared with those in wild-type mice. Because COX-2 is expressed in stromal fibroblasts of human and rodent colorectal carcinomas, we evaluated COX-2(-/-) mouse fibroblasts and found a 94% reduction in their ability to produce the proangiogenic factor, VEGF. Additionally, treatment of wild-type mouse fibroblasts with a selective COX-2 inhibitor reduced VEGF production by 92%.

Journal ArticleDOI
TL;DR: An increase in the level of HIF-1alpha is an early response to myocardial ischemia or infarction, which defines, at a molecular level, one of the first adaptations of human myocardium to a deprivation of blood.
Abstract: Background When the myocardium is deprived of blood, a process of ischemia, infarction, and myocardial remodeling is initiated. Hypoxia-inducible factor 1 (HIF-1) is a transcriptional activator of vascular endothelial growth factor (VEGF) and is critical for initiating early cellular responses to hypoxia. We investigated the temporal and spatial patterns of expression of the α subunit of HIF-1 (HIF-1α) and VEGF in specimens of human heart tissue to elucidate the early molecular responses to myocardial hypoxia. Methods Ventricular-biopsy specimens from 37 patients undergoing coronary bypass surgery were collected. The specimens were examined by microscopy for evidence of ischemia, evolving infarction, or a normal histologic appearance. The specimens were also analyzed with the reverse-transcriptase polymerase chain reaction for HIF-1α and VEGF messenger RNA (mRNA) expression and by immunohistochemical analysis for the location of the HIF-1α and VEGF proteins. Results HIF-1α mRNA was detected in myocardial ...

Journal Article
TL;DR: The inhibition of the growth of U87 and LS174T tumors by the anti-VEGF mAb was associated with a significant reduction in tumor vascular density and a relatively small increase in the number of apoptotic cells.
Abstract: Recent studies in experimental animals have shown that combining antiangiogenic therapy with radiation can enhance tumor response. Whether this enhancement is mainly attributable to angiogenesis inhibition, endothelial cell radiosensitivity, tumor cell apoptosis, or a decrease in the number of hypoxic cells (improved oxygenation) is not known. We designed this study to discern the role of tumor oxygenation. We chose an anti-vascular endothelial growth factor (anti-VEGF) monoclonal antibody (mAb) which has a known target, human VEGF. We also measured interstitial fluid pressure (IFP) to test the hypothesis that the decreased vascular permeability induced by the anti-VEGF mAb can lower IFP. The effect of anti-VEGF mAb on vascular density, partial oxygen tension (pO2), and apoptosis was also measured. Athymic NCr/Sed nu/nu mice bearing 6-mm xenograft of the human glioblastoma multiforme (U87), or colon adenocarcinoma (LS174T) were treated with anti-VEGF mAb injected i.p. on alternate days for a total of six injections at a dosage of 100 microg/injection/mouse. For combined anti-VEGF and radiation, single radiation doses were given under normal blood flow (20 and 30 Gy) or clamped hypoxic conditions (30 and 40 Gy) 24 h after the sixth injection of mAb. The inhibition of the growth of U87 and LS174T tumors by the anti-VEGF mAb was associated with a significant reduction in tumor vascular density and a relatively small increase in the number of apoptotic cells. Compared with size-matched controls, IFP decreased by 74% in LS174T, and 73% in U87 in mice treated with anti-VEGF mAb. After antibody treatment PO2 increased significantly in U87, but did not change in LS174T tumors. Combined treatment induced in U87 tumors a tumor-growth delay (TGD) which was greater than additive; in LS174T except for the 40-Gy hypoxic group, the effect was only additive. In both U87 and LS174T the TGD induced by the antibody was independent of oxygen levels in the tumor at the time of radiation. The fact that the increase in TGD occurred under both normoxic and hypoxic conditions suggests that anti-VEGF mAb treatment can compensate for the resistance to radiation induced by hypoxia.

Journal ArticleDOI
TL;DR: The results suggest that PAR2, although not activatable by thrombin, may nonetheless function as a sensor for coagulation proteases and contribute to endothelial activation in the setting of injury and inflammation.
Abstract: Protease-activated receptor 2 (PAR2) is expressed by vascular endothelial cells and other cells in which its function and physiological activator(s) are unknown. Unlike PAR1, PAR3, and PAR4, PAR2 is not activatable by thrombin. Coagulation factors VIIa (FVIIa) and Xa (FXa) are proteases that act upstream of thrombin in the coagulation cascade and require cofactors to interact with their substrates. These proteases elicit cellular responses, but their receptor(s) have not been identified. We asked whether FVIIa and FXa might activate PARs if presented by their cofactors. Co-expression of tissue factor (TF), the cellular cofactor for FVIIa, together with PAR1, PAR2, PAR3, or PAR4 conferred TF-dependent FVIIa activation of PAR2 and, to lesser degree, PAR1. Responses to FXa were also observed but were independent of exogenous cofactor. The TF/FVIIa complex converts the inactive zymogen Factor X (FX) to FXa. Strikingly, when FX was present, low picomolar concentrations of FVIIa caused robust signaling in cells expressing TF and PAR2. Responses in keratinocytes and cytokine-treated endothelial cells suggested that PAR2 may be activated directly by TF/FVIIa and indirectly by TF/FVIIa-generated FXa at naturally occurring expression levels of TF and PAR2. These results suggest that PAR2, although not activatable by thrombin, may nonetheless function as a sensor for coagulation proteases and contribute to endothelial activation in the setting of injury and inflammation. More generally, these findings highlight the potential importance of cofactors in regulating PAR function and specificity.

Journal ArticleDOI
TL;DR: In HN33, an immortalized hippocampal neuronal cell line, VEGF reduced cell death associated with an in vitro model of cerebral ischemia: at a maximally effective concentration of 50 ng/ml, V EGF approximately doubled the number of cells surviving after 24 h of hypoxia and glucose deprivation.
Abstract: Vascular endothelial growth factor (VEGF) is a hypoxia-inducible angiogenic peptide with recently identified neurotrophic effects. Because some neurotrophic factors can protect neurons from hypoxic or ischemic injury, we investigated the possibility that VEGF has similar neuroprotective properties. In HN33, an immortalized hippocampal neuronal cell line, VEGF reduced cell death associated with an in vitro model of cerebral ischemia: at a maximally effective concentration of 50 ng/ml, VEGF approximately doubled the number of cells surviving after 24 h of hypoxia and glucose deprivation. To investigate the mechanism of neuroprotection by VEGF, the expression of known target receptors for VEGF was measured by Western blotting, which showed that HN33 cells expressed VEGFR-2 receptors and neuropilin-1, but not VEGFR-1 receptors. The neuropilin-1 ligand placenta growth factor-2 failed to reproduce the protective effect of VEGF, pointing to VEGFR-2 as the site of VEGF's neuroprotective action. Two phosphatidylinositol 3′-kinase inhibitors, wortmannin and LY294002, reversed the neuroprotective effect of VEGF, implicating the phosphatidylinositol 3′-kinase/Akt signal transduction system in VEGF-mediated neuroprotection. VEGF also protected primary cultures of rat cerebral cortical neurons from hypoxia and glucose deprivation. We conclude that in addition to its known role as an angiogenic factor, VEGF may exert a direct neuroprotective effect in hypoxic-ischemic injury.

Journal ArticleDOI
TL;DR: It is shown that Ang-1 acting via the Tie 2 receptor induces phosphorylation of the survival serine-threonine kinase, Akt, which is associated with up-regulation of the apoptosis inhibitor, survivin, in endothelial cells and protection of endothelium from death-inducing stimuli.

Journal ArticleDOI
TL;DR: The growth of human tumors and development of metastases depend on the de novo formation of blood vessels, and inhibition of the VEGF tyrosine kinase signaling pathway blocks new blood vessel formation in growing tumors, leading to stasis or regression of tumor growth.
Abstract: The growth of human tumors and development of metastases depend on the de novo formation of blood vessels. The formation of new blood vessels is tightly regulated by specific growth factors that target receptor tyrosine kinases (RTKs). Vascular endothelial growth factor (VEGF) and the Flk-1/KDR RTK have been implicated as the key endothelial cell-specific factor signaling pathway required for pathological angiogenesis, including tumor neovascularization. Inhibition of the VEGF tyrosine kinase signaling pathway blocks new blood vessel formation in growing tumors, leading to stasis or regression of tumor growth. Advances in understanding the biology of angiogenesis have led to the development of several therapeutic modalities for the inhibition of the VEGF tyrosine kinase signaling pathway. A number of these modalities are under investigation in clinical studies to evaluate their potential to treat human cancers.

Journal ArticleDOI
TL;DR: It is reported here that HIF-1alpha protein levels are strongly increased by fetal calf serum in quiescent VSMC, and strong induction of VEGF mRNA by Ang II can also be inhibited by these ROS inhibitors.

Journal ArticleDOI
TL;DR: The results strongly suggest that the VEGF/VEGFR system, induced by hypoxia, leads to the growth of new vessels after cerebral ischemia, and exogenous support of this natural protective mechanism might lead to enhanced survival after stroke.
Abstract: We investigated the hypothesis that hypoxia induces angiogenesis and thereby may counteract the detrimental neurological effects associated with stroke. Forty-eight to seventy-two hours after permanent middle cerebral artery occlusion we found a strong increase in the number of newly formed vessels at the border of the infarction. Using the hypoxia marker nitroimidazole EF5, we detected hypoxic cells in the ischemic border of the neocortex. Expression of vascular endothelial growth factor (VEGF), which is the main regulator of angiogenesis and is inducible by hypoxia, was strongly up-regulated in the ischemic border, at times between 6 and 24 hours after occlusion. In addition, both VEGF receptors (VEGFRs) were up-regulated at the border after 48 hours and later in the ischemic core. Finally, the two transcription factors, hypoxia-inducible factor-1 (HIF-1) and HIF-2, known to be involved in the regulation of VEGF and VEGFR gene expression, were increased in the ischemic border after 72 hours, suggesting a regulatory function for these factors. These results strongly suggest that the VEGF/VEGFR system, induced by hypoxia, leads to the growth of new vessels after cerebral ischemia. Exogenous support of this natural protective mechanism might lead to enhanced survival after stroke.

Journal ArticleDOI
TL;DR: The hypothesis that VEGF gene transfer may also augment the population of circulating endothelial progenitor cells (EPCs) supports the notion that neovascularization of human ischemic tissues after angiogenic growth factor therapy is not limited to angiogenesis but involves circulate endothelial precursors that may home to isChemic foci and differentiate in situ through a process of vasculogenesis.
Abstract: Preclinical studies in animal models and early results of clinical trials in patients suggest that intramuscular injection of naked plasmid DNA encoding vascular endothelial growth factor (VEGF) can promote neovascularization of ischemic tissues. Such neovascularization has been attributed exclusively to sprout formation of endothelial cells derived from preexisting vessels. We investigated the hypothesis that VEGF gene transfer may also augment the population of circulating endothelial progenitor cells (EPCs). In patients with critical limb ischemia receiving VEGF gene transfer, gene expression was documented by a transient increase in plasma levels of VEGF. A culture assay documented a significant increase in EPCs (219%, P<0.001), whereas patients who received an empty vector had no change in circulating EPCs, as was the case for volunteers who received saline injections (VEGF versus empty vector, P<0.001; VEGF versus saline, P<0.005). Fluorescence-activated cell sorter analysis disclosed an overall increase of up to 30-fold in endothelial lineage markers KDR (VEGF receptor-2), VE-cadherin, CD34, alpha(v)beta(3), and E-selectin after VEGF gene transfer. Constitutive overexpression of VEGF in patients with limb ischemia augments the population of circulating EPCs. These findings support the notion that neovascularization of human ischemic tissues after angiogenic growth factor therapy is not limited to angiogenesis but involves circulating endothelial precursors that may home to ischemic foci and differentiate in situ through a process of vasculogenesis.

Journal ArticleDOI
TL;DR: Histological analysis and specialized invasion and bone resorption models show that MMP-9 is specifically required for the invasion of osteoclasts and endothelial cells into the discontinuously mineralized hypertrophic cartilage that fills the core of the diaphysis.
Abstract: Bone development requires the recruitment of osteoclast precursors from surrounding mesenchyme, thereby allowing the key events of bone growth such as marrow cavity formation, capillary invasion, and matrix remodeling. We demonstrate that mice deficient in gelatinase B/matrix metalloproteinase (MMP)-9 exhibit a delay in osteoclast recruitment. Histological analysis and specialized invasion and bone resorption models show that MMP-9 is specifically required for the invasion of osteoclasts and endothelial cells into the discontinuously mineralized hypertrophic cartilage that fills the core of the diaphysis. However, MMPs other than MMP-9 are required for the passage of the cells through unmineralized type I collagen of the nascent bone collar, and play a role in resorption of mineralized matrix. MMP-9 stimulates the solubilization of unmineralized cartilage by MMP-13, a collagenase highly expressed in hypertrophic cartilage before osteoclast invasion. Hypertrophic cartilage also expresses vascular endothelial growth factor (VEGF), which binds to extracellular matrix and is made bioavailable by MMP-9 (Bergers, G., R. Brekken, G. McMahon, T.H. Vu, T. Itoh, K. Tamaki, K. Tanzawa, P. Thorpe, S. Itohara, Z. Werb, and D. Hanahan. 2000. Nat. Cell Biol. 2:737-744). We show that VEGF is a chemoattractant for osteoclasts. Moreover, invasion of osteoclasts into the hypertrophic cartilage requires VEGF because it is inhibited by blocking VEGF function. These observations identify specific actions of MMP-9 and VEGF that are critical for early bone development.

Journal ArticleDOI
15 Apr 2000-Blood
TL;DR: The effects of VEGF on marrow stroma are studied, focusing on the secretion of interleukin-6 (IL-6), a potent growth factor for myeloma cells and an inhibitor of plasma cell apoptosis, which suggests paracrine interactions between myelomas and marrow stromal cells triggered by VEGf and IL-6.

Journal ArticleDOI
TL;DR: It is suggested that PI 3-kinase plays an important role in angiogenesis and regulates VEGF expression.
Abstract: Phosphatidylinositol 3-kinase (PI 3-kinase) is a signaling molecule that controls numerous cellular properties and activities. The oncogene v-p3k is a homolog of the gene coding for the catalytic subunit of PI 3-kinase, p110α. P3k induces transformation of cells in culture, formation of hemangiosarcomas in young chickens, and myogenic differentiation in myoblasts. Here, we describe a role of PI 3-kinase in angiogenesis. Overexpression of the v-P3k protein or of cellular PI 3-kinase equipped with a myristylation signal, Myr-P3k, can induce angiogenesis in the chorioallantoic membrane (CAM) of the chicken embryo. This process is characterized by extensive sprouting of new blood vessels and enlargement of preexisting vessels. Overexpression of the myristylated form of the PI 3-kinase target Akt, Myr-Akt, also induces angiogenesis. Overexpression of the tumor suppressor PTEN or of dominant-negative constructs of PI 3-kinase inhibits angiogenesis in the yolk sac of chicken embryos, suggesting that PI 3-kinase and Akt signaling is required for normal embryonal angiogenesis. The levels of mRNA for vascular endothelial growth factor (VEGF) are elevated in cells expressing activated PI 3-kinase or Myr-Akt. VEGF mRNA levels are also increased by insulin treatment through the PI 3-kinase-dependent pathway. VEGF mRNA levels are decreased in cells treated with the PI 3-kinase inhibitor LY294002 and restored by overexpression of v-P3k or Myr-Akt. Overexpression of VEGF by the RCAS vector induces angiogenesis in chicken embryos. These results suggest that PI 3-kinase plays an important role in angiogenesis and regulates VEGF expression.

Journal ArticleDOI
TL;DR: Examination of the expression of VEGF-A, -B, -C, and -D and their receptors in a model of osteoblast differentiation using the mouse preosteoblast-like cell line KS483 found that VEGf-A production during osteOBlast differentiation was stimulated by insulin-like...
Abstract: Endochondral bone formation is regulated by systemically and locally acting growth factors. A role for vascular endothelial growth factor (VEGF) in this process has recently been proposed, because inactivation of VEGF inhibits endochondral bone formation via inhibition of angiogenesis. Despite the known effect of VEGF as specific endothelial growth factor, its effects on osteoblast differentiation have not been studied. We, therefore, examined the expression of VEGF-A, -B, -C, and -D and their receptors in a model of osteoblast differentiation using the mouse preosteoblast-like cell line KS483. Early in differentiation, KS483 cells express low levels VEGF-A, -B, and -D messenger RNA, whereas during mineralization, KS483 cells express high levels. In addition, expression of the VEGF receptors, VEGFR1, VEGFR2, and VEGF165R/neuropilin, coincided with expression of their ligands, being maximally expressed during mineralization. VEGF-A production during osteoblast differentiation was stimulated by insulin-like growth factor I that enhances osteoblast differentiation and was inhibited by PTH-related peptide that inhibits osteoblast differentiation. Furthermore, continuous treatment of KS483 cells with recombinant human VEGF-A stimulated nodule formation. Although treatment of KS483 cells with soluble FLT1, an agent that blocks binding of VEGF-A and -B to VEGFR1, did not inhibit nodule formation, this observation does not exclude involvement of VEGFR2 in the regulation of osteoblast differentiation. As it is known that VEGF-A, -C, and -D can act through activation of VEGFR2, other isoforms might compensate for VEGF-A loss. The expression pattern of VEGFs and their receptors shown here suggests that VEGFs play an important role in the regulation of bone remodeling by attracting endothelial cells and osteoclasts and by stimulating osteoblast differentiation.